
LOGOSOL

Motion Control
Language

MCL
Programming Guide

Language Reference

Document No 715009001 / Rev. 2.3, May 1999

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

2

The information in this data book has been carefully checked and is believed to be reliable, however, no
responsibility can be assumed for inaccuracies. All information in this manual is subject to change
without notice and does not represent a commitment on the part of the vendor.

FlexWare is trademark of Logosol, Inc.

Trademarks are used throughout the manual only as reference to existing common products. If a
registered trademark is used without being indicated as such, this does not imply that the name is free.

 © Copyright Logosol, Inc. 1991 - 1999.

All rights reserved. No part of this publication may be reproduced, photocopied, stored on retrieval
system, or transmitted without the express written consent of the publisher.

MCL Programming Guide and Language Reference

Document No 715009001 / Rev. 2.3 - May1999

Logosol, Inc.

1155 Tasman Drive

Sunnyvale, CA 94089

Tel: (408) 744-0974

Fax: (408) 744-0977

http://www.logosolinc.com

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

3

Table of Contents

I. INTRODUCTION ..8

II. GETTING STARTED ..9

Connecting the Controller ..9
Host Terminal Settings..9

Controller Initialization ...10
Starting a Motion...10

III. SYSTEM ARCHITECTURE...11

Overview ..11
System Initialization Procedure ...13
Basic Initialization (System Boot Module)..13
System Configuration..13
Macro File Loading..13
Startup Macro Execution ...14

Command Shell ...14

Real-time Scheduler ..14
Foreground and Background Tasks...15
System Check Task ..15
Supervisor Task ..16
Motion Profiler Task ..16
Brakes Control Task..16

Macro Processor ...17
Program Flow Control ...17
Error Handling...17
Exceptions ..17
History Buffer ..17

Commands Processor...18

Motion Profiler...18

Device Driver ...18

IV. HOST COMPUTER INTERFACE ...19

RS-232 Interface Cable..19

Serial Interface Parameters...19

Communication Protocol..19

Synchronization with Host Computer..20

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

4

V. CONTROLLER CONFIGURATION..21

Defining Boards ..21

Defining Digital Inputs ..22

Defining Digital Outputs ...23

Defining Axes ..24

Setting Startup Parameters...27

System Settings ..28

Configuration File Template ...30

VI. MOTION CONTROL LANGUAGE STRUCTURE ..31

Syntax ..31
Character Set..32
Identifiers ..32
Data Types..32
Labels ...33
Unary Operators..33
Binary Operators ...33
Bitwise Operators..34
Operator Precedence ..34
Comments ..34
Multi-Axis Syntax ..34

Language Elements ..36
Variables...36
Constants..37
Definitions...37
Procedures and Macros...37
Flow Control Commands...38

VII. PROGRAMMING GUIDE ...39

System Initialization..39

Axis Position Latching..40

Axis Homing ..41

Parameters Saving and Restoring..43

Pont-To-Point Motion..45

Position-Velocity-Time Motion ...45

Supervisor Macro Implementation ...47

Error Handling...48
Syntax Errors ..48
Motion Errors ..48

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

5

Run-time Macro Execution Errors..48
Exceptions ..49
Guard Conditions ..49
Internal Diagnostic ..49

Absolute Encoders Support ...50

PID Coefficients Optimization ..51

VIII. MOTION CONTROL LANGUAGE REFERENCE...55

Command Categories ...55
Commands Overview..55
System Control Commands...56
Program Control Statements ...56
Motion Control Parameters..57
Current Axis Parameters ...58
System Parameters...58
Servo Boards Control Commands ...59
Error Handling Commands..59
File I/O Functions..60

Commands By Name...61
ABSOLUTE ...61
ACCELERATION ..62
AJERK ...63
ARC..64
APOSITION...65
ASTATUS ...66
BIAS..67
CONST ..68
CLIMIT ...69
DECELERATION ..70
DEFINE..71
DELAY ...72
DJERK ...73
DOWNLOAD ...74
DS ..75
EA...76
EC ..77
EL ...80
ENCODER ..81
ERROR..82
ET...83
EXCEPTION ..84
EXEC ..85
FLIMIT ...86
FORWARD ...87
GO..88
GOTO ...89
GUARD..90

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

6

HALT ...91
HISTORY..92
IF - THEN - ELSE...93
IL ..94
IN..95
INDEX..96
INFO ...97
KD ..98
KI ..99
KP...100
KPHASE...101
LATCH ...102
LINE ..103
LIST ..104
MACRO ...105
MAXERROR..106
MESPEED ..107
MLIMIT...108
MOTOR ...109
NAME..110
NOPOWER ...111
NOSERVO ..112
OUT..113
POSITION ..114
POWER ...115
PRINT..116
PROC ...117
PROFILE ..118
PVT ..119
RC ..120
RECORD..121
RELATIVE...122
REPORT ..123
RESET...125
RETURN ..126
REVERSE...127
RLIMIT ...128
RV ..129
SAMPLES...130
SCALE...131
SERVO ..132
STATUS ...133
STOP ..135
STROBE ..136
SUBMIT ...137
SUPERVISOR..138
TACHOMETER ..139
TIMER ...140
UPLOAD...141
VACCEL...142

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

7

VAR ..143
VELOCITY ..144
VERSION ...145
VSPEED...146
WAIT...147
WHILE - ENDWHILE..148
XAXIS ..149
YAXIS..150
_CLOSE ...151
_OPEN ..152
_READ...153
_WRITE ...154
_PEEK ...155

Application Notes..156
XTTY.SYS DOS DEVICE DRIVER ..156
MCL.EXE MOTION CONTROL KERNEL ..157

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

8

I. Introduction

This manual describes the features of the Motion Control Language (MCL) – a programming language
used in Logosol Motion Controllers.

The manual covers the following topics:

§ Control system architecture

§ The host/target interface

§ Controller configuration and the operating environment available to the developer

§ Programming guide

§ A complete MCL language reference.

An introductory chapter covering controller setup and basic command is included as well.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

9

II. Getting Started

This chapter describes how to start the controller and establish communication with it. Examples of some
basic commands, e.g. for turning the motor power ON and OFF and for starting simple movements are
given.

CONNECTING THE CONTROLLER

The controller requires the following connections:

- Power supply

- Power/Signal Cable to the controlled equipment

- Emergency Power-Off Button. The button should be connected in place of the jumper shipped with
the controller.

- RS-232 communication cable to the host computer. The cable should be NULL-MODEM type. This
cable is connected to the male DB25 or DB9 connector at the back panel of the controller.

Note

For testing and training purposes you can connect only the RS-232 serial line and
communicate with the controller without connecting it to the controlled equipment.

Host Terminal Settings

You could use any terminal emulator program to communicate to the controller. It should have
customizable settings for the communication parameters. Use baud rate set to 9600 bps, 8 data bits, one
stop, and no parity control.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

10

CONTROLLER INITIALIZATION

After the system is connected, turn on the power. Wait about 40 seconds for the controller firmware to
boot-up. Press ENTER key from the terminal. You should get a prompt (>) as a response.

At the commands prompt enter the command POWER. It will initialize the controller boards and will turn
on the power of the servo boards installed. The servo will not be activated. The digital outputs will be set
to their power-on default state. Example:

>POWER
OK
>

If everything is properly initialized you’ll get “OK” response. If something is wrong you’ll receive an error
message.

The next step of controller initialization is turning the servo control on. This is done with the command
SERVO. Here is an example:

>SERVO
OK
>

If the response is OK the servo system is up and running. If you apply torque to the shaft of one of the
controlled motors, you should fill resistance of the servo system trying to compensate this torque.

Starting a Motion

The next step is starting a motion. Assuming that the default parameters of the servo system are
properly set, you need to set only the target position of the axis you want to move. This is done by setting
the axis variable ABSOLUTE. In order to start the motion you need to issue the command GO. Here is
an example for axis X:

>ABSOLUTE X = 1000
OK
>GO X
OK
>

You could also request a relative motion by using the command RELATIVE. Example:

>RELATIVE X = 200
OK
>GO X
OK
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

11

III. System Architecture

This chapter covers the software structure of the motion control system used in Logosol motion
controllers. MCL stands on the upper level of the hierarchy of that system, but parts of it are tightly
connected with lower levels. This was the motif to include a system architecture overview in this manual.

OVERVIEW

The controller firmware is based on a multitasking micro-kernel running on the top of the DOS operating
system. The firmware configuration is described in an initialization file (MCL.INI), customizable for every
specific application. When additional functionality is required, customized or new procedures may be
built with the help of a MCL and loaded using the so-called macro file (MCL.MAC). The macro file is a
piece of code that is created using MCL. Thus, user-defined programs, error handling strategies or third-
party protocol emulation may be developed.

The next figure represents the top-level structure of a motion control system, which uses Logosol motion
controllers and MCL:

MCL
Executable

DOS

LTTY
DRIVER

COM1 COM2

MCL.MAC

MCL.INI

Servo Control and
Digital I/O Boards

Figure 1 Firmware Structure Overview

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

12

DOS is used to provide file I/O functionality and boot-up of the system. Once started, the firmware kernel
takes over the DOS and provides the real-time operation, task synchronization and axis motion
synchronization.

The XTTY communication driver handles the RS-232 communication to the host computer as well as the
daisy chaining multiple controller boxes to one serial interface.

System configuration is described in the MCL.INI

The main modules building the MCL executable are the dedicated real-time scheduler, command shell,
motion profiler, device driver and macro processor. The diagram below describes the different modules
and the connections between them:

Motion Profiler

Command
Processor

Supervisor
Timer Interrupt

Hardware

User I/OStart

Macro
Processor

Device Driver

Command Shell Macro LoaderInitializer

Real-time
Scheduler

Command
Buffer

User
Macros

Figure 2 MCL main modules

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

13

System Initialization Procedure

The system initialization procedure consists of basic initialization, system configuration, macro file
loading and executing of the startup macro.

Basic Initialization (System Boot Module)

The boot module is the first one receiving control once the firmware is started. It processes the command
line parameters, allocates system resources, redirects the critical interrupts (timer, critical error, etc.)
redirects the standard console to a communication driver (XTTY.SYS) and in essence takes over the
DOS. Once the system is initialized the DOS is used only for file I/O operations and interface to the
communication device driver.

System Configuration

The controller hardware resources have to be described in a configuration file (MCL.INI). At startup, the
system is configured by processing the configuration file and creating the corresponding objects.

The configuration file describes the number and address of the installed servo control boards, the digital
inputs and outputs to be used, the servo axes and their properties, the default axis parameters and the
default system parameters. The initialization module creates separate object for every item declared in
the configuration file. Every new object receives a name that is used as a reference to control the object.

The system settings are described at the end of the configuration file. They configure the time slice of
the real time scheduler, the memory to be allocated for macros, the prompts to be used and other
important parameters.

By default, the configuration file name is MCL.INI. It could be specified explicitly as a command line
option. If there is an error in the configuration file the initialization module terminates the boot procedure
with an error and the control is returned to DOS.

Macro File Loading

When system configuration is completed the initialization module checks for system and user macro
files, specified among the command line parameters. Then, it invokes the macro loader with the given
names. The processed macro files are considered separate program modules. Macro line numbers are
individual for each module.

The macro loader could report insufficient memory because of the system settings in the configuration
file. They define the maximum number of macros, variables and other settings.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

14

Startup and Shutdown Macro Execution

After the macro file is loaded the system initialization module searches for a macro named “Startup”. If
such a macro is found, the control is transferred to the macro processor to execute it. After the execution
is complete the control is returned to the command shell that prints the first command prompt to notify
the host computer that it is ready to process commands.

The Startup macro allows to have a dedicated startup sequence that initializes user defined variables,
restores data, which has previously been stored in a parameter file, sets the desired supervisor,
exception macros and so on.

When QUIT command is issued, the program searches for a macro named “Shutdown” and if it is
present, the macro processor executes it before the program quits to the operating system. The purpose
of this macro is to allow the host to setup an automatic cleanup before the program termination, such as
halting all moving axes, determining output states, saving parameters and so on.

If no Shutdown macro have been submitted, the default behavior of the program is to issue HALT
command without parameters, thus stopping all moving axes and terminating procedures being executed
in background.

COMMAND SHELL

The command shell is the module providing the MCL user interface. It is started after the system is
completely initialized and ready to process new commands. The shell indicates that it is ready to process
commands by printing a command prompt.

The command shell implements the communication protocol between the host computer and the MCL
kernel. Every command should consist of number of ASCII characters terminated by a Carriage Return
(ASCII 13) character. After the command is processed the shell prints a prompt to indicate it is ready to
process a new command. By default, the command prompt consists of three characters – ASCII 13 (CR),
ASCII 10 (LF) and ‘>’. If the command is not accepted or its execution fails the command shell replaces
the last prompt character with a question mark ‘?’, thus indicating to the host that the command has not
been executed.

REAL-TIME SCHEDULER

The real-time scheduler is responsible for sharing the CPU time between the tasks running concurrently.
It also provides the hard real-time performance of the controller meaning the operation of the tasks does
not depend on the current load of the system and is totally predictable.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

15

The real-time scheduler implements the concept of time-slices defined by the timer interrupt. By default,
the time slice is set to 6 ms, but it could be changed in the system section of the configuration file. Every
time slice the scheduler receives control and starts all real-time tasks one by one. They are designed to
be non-preemptive so their execution normally ends before the expiration of the time slice. The
remainder of the time in the time slice is available to non real-time tasks like the target/host
communication and the user interface.

The real-time tasks running concurrently in the controller are Foreground, Background, System Check,
Supervisor, Motion Profiler and Brakes control tasks. They are briefly described in the following
subsections.

Foreground and Background Tasks

The Foreground task does the interpretation of the host commands. It also takes care for transmitting the
messages between the Background and the Foreground tasks.

Both Foreground and Background tasks can process macros. The macros can be started by the
command shell or from another task. Every time slice a single line from the macro is executed.

When the command shell receives a command that is a macro name, the command processor uses the
Foreground task to execute it. No prompt is returned to the user until the macro is completely executed.
The return value set by the return statement of the started macro determines whether the command shell
will print acknowledge (CR, LF, ‘>’) or not acknowledge (CR, LF, ‘?’) prompt.

When the host needs to communicate with the system during a procedure that might take quite a long
time to complete, the procedure should be executed in the Background task. Using the Submit statement
from within a macro or from the command line instructs the Real Time Scheduler to execute the
procedure in the Background task. The Background task is running even if another macro is started in
the Foreground task. Thus, the execution status of a long procedure could be monitored or interrupted.
Only one Background task can run at a time.

System Check Task

Every time slice, the MCL performs a series of administrative and supervising actions to verify the
system integrity:

• Checks for the emergency power off signal.

• Checks the servo amplifiers for current overload.

• Checks whether axes positions are within the range defined by the software limit positions.

• Checks whether the tracking error exceeds the limit for maximum position error.

If any of the above conditions is violated a dedicated exception handler macro is started. It is executed in
the background task. Thus, if the background task is running and an exception occurs the currently
processed macro is interrupted and the exception handler macro is started instead.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

16

Supervisor Task

The supervisor task is started every time slice. You could specify a macro to customize the supervisor
task. This macro will be executed every time slice in its entirety. The supervisor task is designed to
perform recurring tasks like controlling input states or setting output states. It could also check the
consistency of the system based on user-defined conditions and eventually perform corrective actions.

Any of the macros defined could be set as Supervisor macro but not all MCL commands may be
executed within the Supervisor macro. Commands that take undetermined time to execute e.g. file I/O
and user interface commands are not allowed.

The Supervisor macro should be designed to consume as little time as possible during normal operation.
The supervisor macro is installed with the command Supervisor.

Motion Profiler Task

The Motion Profiler Task runs the motion profile generator. It provides the synchronization of multiple
motors in accordance with the desired motion path. Every time slice the motion profile generator loads
new desired velocity to each of the motors participating in the movement.

The tracking error heavily depends on the time slice length. The shorter is the time slice, the smaller
should be the tracking error. Other factors affecting performance are the dynamics of the controlled
mechanical system, as well as the maximum speed and acceleration set for each axis.

Brakes Control Task

The Brakes Control Task is intended to control the status of brakes attached to the shaft of the controlled
motors.

When a motion is started the brake attached to the corresponding motor is released. After the motion
completes the brake is activated after a specified time-out. If another motion command is issued before
the time-out expiration the timer is reset.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

17

MACRO PROCESSOR

The Macro processor is responsible for the interpretation of commands within the currently executed
macros. It processes the commands related to program flow, handles run-time errors, and maintains the
history buffer by keeping track of the started macros and the detected exceptions.

Program Flow Control

The program flow control module maintains program execution status, the program line counter and the
stack associated with every macro processing task. Normally, it increases the program line counter by
one after every executed command. However, if the command is one of the statements controlling the
flow control like IF - ELSE - ENDIF or GOTO then the next value of the program counter is set by the
result of the execution of these statements.

Error Handling

If for any reason a program line can not be executed (for example division by zero, or use of invalid
index for an array) the normal program execution is interrupted. The content of the program counter is
stored in a dedicated variable and an appropriate message is stored in the history buffer. Based on the
system configuration an error message might be displayed.

Exceptions

Exceptions are emergency events that might occur at any time no matter if a macro is executed or a
motion is started. Exception generators are built-in system integrity checks as well as user defined
conditions. Whenever an exception event is generated it is stored in the history buffer, the normal
execution of the background task (if started) is interrupted and a dedicated macro is started. The user
could define this exception macro in order to implement error specific actions. If there is no exception
defined, the MCL kernel provides default actions to ensure system safety.

History Buffer

The history buffer is intended to keep track of the activities of the macro processor and the detected
exceptions. It is implemented as a circular buffer that keeps the 20 most recent commands. The content
of the buffer could be displayed through the RS-232 line or stored to a file inside the controller for later
reference.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

18

COMMANDS PROCESSOR

The command processor executes the commands submitted by the user through the command shell of
the macro processor, executing statements from a started macro. It returns information about the
execution status and the value of the program line counter.

If the command is invoked from the command shell and it fails, then the command shell returns “not
acknowledged” prompt to the user (‘?’ by default). If the command is invoked from the macro processor
and it fails, then the macro execution is terminated.

Normally all commands are executed within a single time slice. However there are exceptions like the
GO command that might have to wait for the brake to release the shaft of the motor if needed.

MOTION PROFILER

Motion Profiler module generates the velocity profiles and provides the synchronization of the
participating axes.

The motion profiler is started by the GO command and keeps running until the moving axes reach their
desired position. It also terminates if one or more of the moving axes stops because of an error.

DEVICE DRIVER

The motion control device driver provides unified interface to the different motion control boards that the
controller could be configured with. The user does not have direct access to the driver functions and its
internal structures.

The driver is an integral part of the firmware executable. It is linked with the rest of the modules in order
to avoid any communication overhead.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

19

IV. Host Computer Interface

RS-232 INTERFACE CABLE

RS-232 interface cable has to comply with the specification of “NULL Modem” cable.

SERIAL INTERFACE PARAMETERS

The serial interface parameters are configurable by the communication driver. By default they are:

Speed: 9600 baud per second

Data bits: 8

Stop bits: 1

Parity check: none

The maximum communication speed supported is 115200 baud per second.

COMMUNICATION PROTOCOL

The communication protocol consists of ASCII strings. The commands from the host to the controller are
terminated with Carriage Return [ASCII 13]. The response from the controller is terminated by Carriage
Return [ASCII 13], Line Feed [ASCII 10] and Prompt character. If the command is accepted, then the
Prompt character is Greater Than Sign [>]. If the command has a syntax error, or its parameter is out of
range, or it can not be executed for some reason then the Prompt sign character is Question Mark [?]

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

20

Here is an example of a communication session:

Host Controller Comment

POSITION X [CR] The host requests the current position of axis X

1000[CR][LF]> The controller returns the position and prompt

POSITION X = 100[CR] The host sets the current position of axis X

[CR][LF]> The controller confirms the command is accepted

METALLICA X[CR] The host sends wrong command

[CR][LF]? The controller indicates invalid command

SYNCHRONIZATION WITH HOST COMPUTER

The synchronization with the host computer is needed to ensure the commands are sent at the proper
time, and in the desired sequence. This is especially important for commands executing motion and
taking relatively long time to complete. The synchronization problem could be resolved in two different
ways.

The first approach is synchronous – the host should poll the controller status and wait until it is busy. The
next motion command should be sent after the controller reports “ready”. The advantage of this method
is that the current controller status is available to the host at all times. The disadvantage of this approach
is the communication overhead.

The second approach is asynchronous – the host starts the motion and waits for notification message
from the controller. At the end of the started motion the controller sends the message to the host. The
advantage of this synchronization method is the smaller communication overhead. A negative side to it
is that the host has an update of the status of the controller only at the end of every motion.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

21

V. Controller Configuration

Logosol Servo Controller provides flexible utilization of the system resources. The configuration
information is described in a initialization file (by default, MCL.INI), used by the Motion Control Kernel
during its startup. This chapter describes the format and contents of this file.

The name of the configuration file is specified as a command line parameter for MCL.EXE. This allows
you to have a number of different configurations stored in the controller at the same time. This could be
helpful during development and testing or if different machines need to be supported by the same
controller.

During startup, the Motion Control Kernel reads the file line by line and creates internal structures of data
dedicated to every described resource. If an error is detected, the startup procedure prints an error
message and the line number where the error occurred, then terminates its execution.

The configuration file consists of sections defining controller resources and their parameters. The names
of the sections are: BOARDS, INPUTS, OUTPUTS, AXES, PARAMETERS and SYSTEM. The syntax
and the parameter settings of these sections are described next.

DEFINING BOARDS

The first section defines the boards in the controller. It deals with the servo and the digital I/O boards that
the user wants to declare to the firmware (other boards inside the controller - CPU board, disk emulator
board, etc. are not declared). A name is associated with each board installed at a given base I/O
address. Boards, which are present in the controller box but are not declared, are neglected by the
firmware.

Syntax:

[BOARDS]
BoardName IOAddress

Parameters:

BoardName Any identifier to refer to the board
IOAddress The base I/O address to which the board is set up.

The name of the board must start with an alphabetic character and should not exceed 40 characters.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

22

The base address could be specified as a decimal or hexadecimal number. The hex number should start
with 0x prefix. Example: 0x280. The specified base address must correspond to the jumper settings of
the board. Refer to the board documentation for details regarding the base address setup of the
particular board.

Example:

[BOARDS]
XYSTAGE 0x280

DEFINING DIGITAL INPUTS

The Inputs section defines the digital inputs to be used. Each input line is identified by its name, followed
by the board name to which it belongs, an input index and the active state of the input corresponding to a
logical 1.

Syntax:

[INPUTS]
InputName BoardName InputNumber ActiveState

Parameters:

InputName Name assigned to the input line
BoardName Name above defined board
InputNumber Hardware index of the input line in the board
ActiveState LOW or HIGH level to be considered logical 1

The name of the input must start with an alphabetic character and should not exceed 40 characters.

The BoardName should be one of the boards defined in the [BOARDS] section. The configuration file
processor does not process forward references and that is why the [INPUTS] section has to be defined
after the [BOARDS] section.

The InputNumber is the index of the input you are defining within the specified board. Refer to the board
documentation about the correspondence of the input numbers and the pins of the interface connectors.

By defining an ActiveState the desired polarity of the input can be changed easily. The possible settings
of this field are “LOW” or “0” and “HIGH” or “1”.

The maximum number of input names that can be defined is 80.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

23

Examples:

[INPUTS]
; InputName BoardName InputNumber ActiveState
HomeSwitchX XYZ IN19 LOW
HomeSwitchY XYZ IN17 LOW
HomeSwitchZ XYZ IN15 LOW
VacSensor1 XYZ IN7 LOW
VacSensor2 XYZ IN8 LOW

DEFINING DIGITAL OUTPUTS

The Output section defines the digital outputs. Each output line is identified by its name, followed by the
board name to which it belongs, an output index, the active state of the output corresponding to a logical
1 and the “power on default” state of the output.

Syntax:

[OUTPUTS]
OutputName BoardName OutputNumber ActiveState PowerOn

Parameters:

OutputName Name assigned to an output line
BoardName Name assigned to the board
OutputNumber Output line number on the board
ActiveState LOW or HIGH to be logical 1
PowerOn The state after POWER command

The name of the output must start with an alphabetic character and should not exceed 40 characters.

The BoardName should be one of the defined boards in the [BOARDS] section. The OutputNumber is
the index of the output you are defining within the specified board. Refer to the board documentation
about the correspondence between the output numbers and the pins of the interface connectors.

By defining an ActiveState the desired polarity of the output can be changed easily. The possible settings
of this field are “LOW” or “0” and “HIGH” or “1”.

The PowerOn field specifies the state of the output after the execution of POWER command.

Note

The outputs controlling the amplifier and sensor power must have PowerOn state
HIGH in order to make possible turning the amplifier power on.

Refer to the documentation of the specific servo control board for the outputs that must be turned on.
The maximum number of output names that can be defined is 80.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

24

Examples:

[OUTPUTS]
; OutputName BoardName OutputNumber ActiveState PowerOn
CloseValve1 XYStage OUT0 HIGH OFF
CloseValve2 XYStage OUT1 HIGH OFF
PowerOPS XYStage OUT8 HIGH ON
PowerMain XYStage OUT10 HIGH ON
BrakeZ XYStage OUT13 HIGH OFF

DEFINING AXES

The AXES section defines the servo-controlled axes. Each axis is represented by multiple line section
describing different axis parameters. The section starts with the parameter NAME and ends with the
beginning of a new section (with its own NAME parameter) or with the beginning of a new configuration
file section.

Syntax:

[AXES]
Name AxisName AxisType
Master BoardName AxisIndex
Slave SlaveAxis LinkCoeff
Encoder CountsPerRev
Transmission TransmissionRatio
Brake OutputName Time-Out

The following parameters are specific for brushless motors only:

HallSense LogicLevel
InitPower InitPowerLevel
InitTime InitTime
Poles PolesNumber
Phases PhasesNumber

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

25

The table below describes the meaning of the different parameters:

Parameter Arguments Description

Name AxisName

AxisType

This parameter defines an axis with the name specified as the first
argument. The identifier should start with the alphabetical
character and should not exceed 40 characters.

After the name you could specify linear [L] or rotational [R]. This
argument is optional. By default all axes are linear. The type of
axis is important for using different scaling coefficients. They are
individual for the linear and the rotational axes. In that way you
may switch between inches and meters without changing the
measurement unit for the rotational axes, i.e. degrees.

The Name parameter initiates new axis definition section.

Master BoardName

AxisIndex

This is mandatory parameter that associates the specified above
axis name with particular board and index within the board. The
Logosol servo boards support from 1 to 4 servo channels and they
are numbered with indexes from 0 to 3.

Slave AxisName

LinkCoeff

The Slave parameter defines an axis as a dependent of another
axis, called master axis. When the master axis moves to a given
distance, the slave axis moves automatically to the same distance
multiplied by the link coefficient.

Note that a single master axis can have multiple slave axes. They
should be specified on a different lines starting with the Slave
parameter.

Encoder CountsPerRev The Encoder parameter specifies the resolution of the encoder
installed on the motor moving the given axis. Note that the
resolution is specified as “raw” resolution, i.e. the number of
encoder counts per revolution for one of the encoder phases, This
number is indicated also in the encoder spec. Logosol motion
controllers use quadrature encoder signal reading, meaning that
the raw encoder resolution is multiplied by 4.

Transmission TransmissionRatio The Transmission parameter specifies the number of turns of the
transmission output shaft for one revolution of the motor shaft.

This parameter along with the Encoder parameter is used by the
firmware to calculate the correspondence between the user
defined units (for example thousands of an inch) and the number
of encoder counts generated for this motion.

The Transmission coefficient could be specified with very high
accuracy. The firmware will process a floating point number with
up to 15 significant digits.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

26

Parameter Arguments Description

Brake OutputName

Time-Out

The Brake parameter supports the motors that have brakes
controlled by some of the controller digital outputs. The parameter
defines one of the output lines as such an output. Every time the
motor has to move the firmware will turn on this output effectively
releasing the brake. If the motor does not move for the specified
time-out period the output will turn off the brake and this will stop
the motor shaft.

Note that the brake output should be powered by OPS outbound
power source in order to turn the output to low automatically (by
the hardware) when the motor power amplifiers are disabled.

Thus, whenever the motor amplifiers are overloaded and disabled
by hardware, the brake power is turned off and the brake will be
activated automatically (provided the brake is normally closed),
with no need for software support.

HallSense LogicLevel The HallSense parameter sets the logic level interpretation for the
hall sensor inputs of brushless motors. This parameter is only
applicable for configuring brushless motor servo controllers.

InitPower InitPowerLevel This parameter sets the initial value for motor command register,
used when executing algorithmic phase initialization of brushless
motors. This parameter is only applicable for configuring
brushless motor servo controllers.

InitTime InitTime The InitTime parameter sets the amount of time to wait after
phase initialization of brushless motors in units of servo chip time
slices. This parameter is only applicable for configuring brushless
motor servo controllers.

Poles PolesNumber The Poles parameter sets the number of encoder counts per
commutation cycle of brushless motors. This parameter is only
applicable for configuring brushless motor servo controllers.

Phases PhasesNumber The Phases parameter sets the current commutation waveform
according to number of phases of the motor. There are 2 and 3-
phase brushless motors. This parameter is only applicable for
configuring brushless motor servo controllers.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

27

Examples:

[AXES]
Name X ; Axis name (by default - linear)
Master XYStage 0 ; Master board and axis index
Encoder 2500 ; Encoder counts

Name Rotor R ; Indicate rotational axis
Master XYStage 2
Slave X –1.5 ; Slave axis name and ratio

SETTING STARTUP PARAMETERS

The [PARAMETERS] section is intended to provide set of default or start-up parameters for the axes.
These parameters are set before any command is processed. They ensure that the axes are in known,
defined state after start up.

Syntax:

[PARAMETERS]
AxisName AxisParam = Value

Example:

[PARAMETERS]
VEL X = 400 Y = 400 Z = 400
ACC X = 1000 Y = 1000 Z = 1000
MAX X = 1000 Y = 1000 Z = 1000
KP X = 80 Y = 80 Z = 80
KI X = 100 Y = 100 Z = 100
KD X = 2000 Y = 2000 Z = 2000
IL X = 40 Y = 40 Z = 40
DS X = 256 Y = 256 Z = 256
FLIMIT X = 5000 Y = 5000 Z = NOLIMIT
RLIMIT X = -2000 Y = -2000 Z = NOLIMIT

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

28

SYSTEM SETTINGS

The section [SYSTEM] is used to define the values of the system specific parameters. They control the
time-slice, the response mode, the memory distribution, the names of the external programs
implementing the file transfer protocols, the command shell prompt and so on. The table below describes
all parameters and their meaning.

Syntax:

[SYSTEM]
ParName Value

Parameter Description

TimeSlice The period between two subsequent cycles of the real-time kernel. The dimension
is 1 millisecond. The maximum setting is 55 ms.

Info The format of the status returned. The allowed values are:

• NONE no status messages are returned unless requested

• DEC status is returned as decimal number

• HEX status is returned as hexadecimal number

• TEXT status is returned as a set of text messages

Report An integer number that represents a bit mask for the reporting option; see Report
variable for a description of the mask; the value is the default for the Report
variable

MaxSamples The maximum number of samples to be recorded by the RECORD command. It
stores the current position and error of the specified axis.

MaxMacros The maximum number of macro definitions in one macro file (default = 100)

MaxProcs The maximum number of procedure definitions in one macro file (default = 100)

MaxLabels The maximum number of labels defined in a macro file (default = 50)

MaxLines The maximum number of lines in one macro file (default = 1000)

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

29

MaxVars The maximum number of variables defined in a macro file (default = 100)

MaxSamples The maximum number of position samples (default = 0)

Upload Name of an executable file (. COM or .EXE) to be called by the UPLOAD
command to upload files to the host computer.

Download Name of an executable file (.COM or .EXE) to be called by the DOWNLOAD
command to download data.

PromptACK Prompt to be returned if the user command is accepted. The definition consists of a
list with the ASCII codes of the prompt. Note that (because of the DOS
environment) ASCII code 10 (Line Feed) is transformed automatically to 13, 10
(Carriage Return, Line Feed).

PromptNAK Prompt to be returned if the user command fails. The definition format is identical
to the one for PromptACK parameter.

Kernel ON or OFF – turns on (default) or off the kernel level command set. When the
kernel commands are disabled, the syntax analyzer recognizes only the macro
names as reserved words. The rest of the commands are available with dot prefix.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

30

CONFIGURATION FILE TEMPLATE

[BOARDS]
XYZ 0x0280

[INPUTS]
HomeSwitchX XYZ IN0 LOW
HomeSwitchY XYZ IN1 LOW
HomeSwitchZ XYZ IN2 LOW

[OUTPUTS]
Pwr XYZ OUT0 HIGH ON
Pwr40V XYZ OUT1 HIGH ON
BrakeZ XYZ OUT2 HIGH OFF

[AXES]
Name X ; Axis name
Master XYZ 1 ; Master board and axis index
Scale 1.5 ; Scaling coefficient
Encoder 1800 ; Encoder counts

Name Y
Master XYZ 0
Slave X –1 ; Slave axis name and ratio
Scale 100
Encoder 1800

Name Z
Master XYZ 2
Scale 300
Encoder 1800
Brake BrakeZ 30000 ; Brake output and timeout

[PARAMETERS]
VELOCITY X = 400 Y = 400 Z = 400
ACC X = 1000 Y = 1000 Z = 1000
MAX X = 1000 Y = 1000 Z = 1000
KP X = 80 Y = 80 Z = 50
KI X = 100 Y = 100 Z = 100
KD X = 2000 Y = 3000 Z = 2000
IL X = 40 Y = 40 Z = 40
DS X = 256 Y = 256 Z = 256
FLIMIT X = NOLIMIT Y = NOLIMIT Z = NOLIMIT
RLIMIT X = NOLIMIT Y = NOLIMIT Z = NOLIMIT

[SYSTEM]
TimeSlice 4
Info Text
Report 0xffff
Download transfer /r
Upload transfer /s

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

31

VI. Motion Control Language Structure

A specialized programming language, called Motion Control Language (MCL), controls the servo
controller resources. Using MCL, which can handle various control tasks, Logosol controllers may be
implemented in a wide range of applications. Common applications include robot control and industrial
automation.

SYNTAX

The MCL is an ASCII command language. Its character set is made of printable characters, CR, LF and
EOF only. The next subsections cover the following topics:

Character set

Identifiers

Data Types

Labels

Unary, binary and bitwise operators

Operator precedence

Comments

Multi-axis syntax

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

32

Character Set

Letters A – Z, a - z

Digits 0 1 2 3 4 5 6 7 8 9

Special Characters "#%&'()*+,-./:;<=>_ | ! $? @ [\] ^ { }

Space ASCII 32

Comma ASCII 44 ,

Carriage return ASCII 13 (^M)

Line feed ASCII 10 (^J)

EOF ASCII 26 (^Z)

Underscore ASCII 95 _

Identifiers

An identifier is a sequence of alphanumeric characters. It must start with a letter or with
underscore (_) character. The maximum length should not exceed 40 characters.

Examples:

Axis_1 correct
This_is_an_identifier correct
1st_ax1s not correct, must start with a letter

Data Types

The only available data type is a 32-bit signed integer.

If a number starts with 0x it is interpreted as a hexadecimal.

Examples:

12345 valid integer number
0x100 hexadecimal integer, equals decimal 256,
12345.00 not valid, must not have a fractional part

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

33

Labels

The label marks a certain position within a macro. An identifier followed by a colon defines it. The labels
are used as arguments by GOTO statements.

Examples:

Loop1: ; Label definition in a separate line
ABS X=1000
GOTO Loop1 ; Jump to the label – infinite loop

Loop2: ABS X=1000 ; Label definition together with a command
; more commands ...
GOTO Loop2 ; Jump to the label

Unary Operators
- Negation

! Boolean NOT

~ Bitwise NOT (inversion)

Binary Operators
+ Add

- Subtract

* Multiply

/ Divide

&& Boolean AND

|| Boolean OR

< Less Than

<= Less or Equal

>= Greater or Equal

> Greater

!= Not equal

== Equal

= Assignment

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

34

Bitwise Operators

The bitwise operators work on the individual bits of the operands. They are useful for setting or clearing
specific bits within a variable.

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

Operator Precedence

All operators are processed with dominating priority as shown below:

1. * /

2. + -

3. <= =>

4. != ==

5. &

6. ^

7. |

8. &&

9. ||

10. =

Comments

Every string found in a command line after a semicolon is treated as a comment.

Examples:

; This is a comment
ABS X=100 ; The comment starts with semicolon

Multi-Axis Syntax

The multi-axis syntax allows setting an axis parameter for multiple axes in a single line statement. It also
provides report of parameter settings or applying a motion command to a number of axes. This syntax
has two major advantages – it simplifies the manual entry of data and provides synchronous update of
the parameters (or execution of the motion commands). While the ease of use is important only if
commands are entered manually, the synchronous update is important in both macro processing and

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

35

user command processing. The performance improvement comes from the fact that the motion control
kernel executes one command line per time slice. If you need to update an axis parameter or start
multiple axes at the same moment the single axis syntax will result in several lines of code. In this case it
is appropriate to use the multi-axis format of the commands.

The common format of multi-axis parameter setting is following:

ParName AxisName1 = Value1, AxisName2 = Value2, … AxisNameN = ValueN

The above syntax is equivalent to the following set of commands issued as separate commands:

ParName AxisName1 = Value1

ParName AxisName2 = Value2

 . . .

ParName AxisNameN = ValueN

The maximum command line length limits the number of axes set in a single line.

Example:

VEL X = 1000, Y = 1200
ACC X = 2000, Y = 3000

The multi-axis syntax for the commands reporting data has the following format:

ParName AxisName1, AxisName2, … AxisNameN

The single command equivalent is:

ParName AxisName1

ParName AxisName2

. . .

ParName AxisNameN

Example:

VEL X, Y
ACC X, Y

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

36

The last form of the multi-axis syntax concerns the axis control commands like GO, HALT, LATCH etc.
Normally if you don’t specify axis parameter to these commands the command interpreter assumes that
the command is applicable to all axes. If you specify explicitly the axis name then motion command will
apply to the specified axis only.

The multi-axis syntax allows combination of the above alternatives. You could specify a list of axes you
want this command to be applied to. Here is the syntax format:

CmdName AxisName1, AxisName2, … AxisNameN

The single command equivalent is:

CmdName AxisName1

CmdName AxisName2

…

CmdName AxisNameN

Example:

GO X, Y

LANGUAGE ELEMENTS

Variables

A variable holds the actual value of a parameter that can be redefined during operation of the MCL.
Each variable can be used as a function as well.

Some variables are actually a collection of variables, called arrays. The most important one is the axis
variable. The individual items of an array can be requested by writing the identifier of the array element.
If a value is assigned to an array, the assignment is actually done to the array element.

The array indexes can be surrounded by square brackets.

Examples (we assume three axes - X, Y and Z):

VELOCITY X=1000 Y=2000
VEL [X]=1000 [Y]=2000
VEL [X] [Y]

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

37

The MCL allows the declaration of user variables via the VAR statement. Once declared, user variables
are used in the same way as predefined variables. Each user variable implicitly defines a virtual function
with the same name. The following types of variables exist:

- Multi-axis variables (referenced with names or indexes)

- System Variables

- Read-only variables

- Task-dependant variables

- User-defined variables

Constants

The MCL allows the declaration of user constants with the CONST statement. Once declared, user
constants can be used in the same way as predefined functions.

Definitions

The MCL language provides a statement DEFINE that allows you to associate an identifier with
expression. If later in the program the defined identifier is used it will be replaced (at run-time) with the
defined expression.

Procedures and Macros

An MCL program consists of data definitions and a set of procedures and macros. They are called by
specifying their name followed by the required parameters. This could be done either from the command
line or within the program (calling of subroutine).

Macros and procedures differ in the way they are processed. If the user calls a macro from the command
line, the prompt will be returned after the end of execution. This means that the user has no control over
the system during the macro execution.

If user calls a procedure from the command line then the procedure execution is started (submitted) to
the background task and a prompt is returned to the user immediately. After that the user can issue an
MCL command or even a macro, which will be executed in parallel with the procedure. The only
limitation is that no second procedure can be submitted before the end of the first one.

It is possible to call procedures and macros from other procedures and macros. In this case the called
subroutine is processed by the same task as the calling one, unless a procedure or a macro running in
the foreground task “submits” a procedure to the background task. Thus, the type of the routine - a macro
or a procedure is of significance only during the command line processing.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

38

Flow Control Commands

The MCL program statements are used for defining procedures and macros, specifying constants and
variables and managing execution flow control.

IF-ELSE-ENDIF Specify conditional branch

WHILE-ENDWHILE Define loop

GOTO Unconditional jump to label

WAIT Hold program execution until expression becomes TRUE

DELAY Hold program execution for a specified time

SUBMIT Start procedure execution as a concurrent task

RETURN Indicate end of macro or procedure

Labels needed as a parameter for the GOTO statement are defined by semicolon ":" at the end.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

39

VII. Programming Guide

SYSTEM INITIALIZATION

After the controller is powered up, the firmware is loaded and different modules are initialized. As a part
of the initialization process the firmware loads the macros and looks for a macro called STARTUP. If
such a macro exists it is executed.

The purpose of this macro is to initialize the variables, restore the calibration parameters from a file and
eventually notify the host computer that the controller is up and running. Below is an example of a simple
startup macro:

MACRO Startup
EXEC params.dat ; Restore saved parameters
PRINT “Ready”
RETURN

If an embedded system is developed that has to start as soon as the power is up then this is the macro
that should take care for initializing the hardware, turning the servo control on and begin execution of the
working cycle. Here is an example of such initialization:

MACRO Startup
EXEC params.dat
POWER
SERVO
SUBMIT MainLoop ; Start procedure in the background task
RETURN

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

40

AXIS POSITION LATCHING

The position latching is a process of recording the current axis position in a dedicated “index” register.
The latching is synchronized by the hardware with the rising or falling edge of a selected external signal.
This signal could be either the index of the encoder (when an axis is homed) or any of the available
external strobe signals.

The selection of the strobe signal is implemented with the axis parameter Strobe. The code to be set
should be selected from the table corresponding to the board you are using. Look at the description of
the command Strobe in the command reference for the current tables. Note that the code also
determines if the latching should be done on the falling or on the rising edge of the strobe signal.

The start (enabling) of the latching procedure is initiated with the command Latch. It clears the index
register and sets the bit 0 (mask 0x0001) in the status word. It indicates that the latching is initiated. After
the position is latched the bit 0 is cleared and bit 3 (mask 0x0008) is set to indicate the latching is
completed. No other position will be recorder until a new Latch command is issued.

The position latching is a precise way to measure the coordinate of an axis at the moment the strobe
signal is activated. That is why the latching is used in the home procedure, in scanning procedures –
always when an accuracy is needed.

Here is an example of how latching is initialized and started:

; Procedure Name:
; LatchPos
;
; Parameters:
; Axis – name if the axis to be homed
; Scode – code of the index strobe signal
;
; Calling example:
; LatchPos X, 1

PROC LatchPos Axis, Scode
STROBE [Axis] = Scode ; Select source for the strobe
LATCH Axis ; Initiate latching
REL [Axis] = 20000 ; Move to relative coordinate
GO Axis
WAIT STA [Axis] & 0x0408 ; Wait for latching or end of motion
IF STA [Axis] & 0x0008

HALT Axis ; Stop the motion
PRINT “The latched coordinate is “, INDEX [Axis], #10

ELSE
PRINT “No latched coordinate”, #10

ENDIF
RETURN

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

41

AXIS HOMING

The homing procedure provides accurate initialization of the coordinate system of an axis. It is
mandatory for every servo-controlled system. The home procedure should be executed before any
motion is started.

The home procedure consist of the following basic steps:

- Set home speed and acceleration, set no position limits for the axis.

- Move to find where the home sensor changes its state.

- Move to latch the position of the first encoder index.

- Set the origin of the axis coordinate system.

- Restore position limits.

Here is an example of a home procedure:

; Procedure Name:
; HomeAxis
;
; Parameters:
; Axis – name if the axis to be homed
; HomeSensor – name of the home sensor to be used
; HomeOffset – offset for the origin of the axis zero position
;
; Calling example:
; HomeAxis X, InHomeX, 2500

; Golbal variables:
VAR SensorState ; Keeps initial state of the home sensor
VAR Fsave ; Temporary place for limit positions
VAR Rsave

PROC HomeAxis Axis, HomeSensor, HomeOffset

; Initial setup.
VEL [Axis] = 1000 ; Set home speed
ACC [Axis] = 2000 ; Set home acceleration

Fsave = FLIMIT [Axis] ; Save current limit positions
Rsave = RLIMIT [Axis]
FLIMIT [Axis] = 0 ; Disable position limit check
RLIMIT [Axis] = 0

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

42

; Find home sensor edge.
IF IN [HomeSensor] == 0 ; Check for current state of the sensor

REV Axis ; Request motion in reverse direction
ELSE

FOR Axis ; Request motion in forward direction
ENDIF
GO Axis ; Start motion

; Wait until the home sensor change its state.
WAIT SensorState != IN [HomeSensor]
HOLD Axis ; Stop motion smoothly
WAIT STA [Axis] & 0x0400 ; Wait for motion to stop

; Latch the coordinate of the encoder index.
STROBE [Axis] = 14 ; Select encoder index to be the strobe
LATCH Axis
FOR Axis ; Allways search in forward direction
GO Axis
WAIT STA [Axis] & 0x0008 ; Wait until the position is captured
HALT Axis ; Stop motion smoothly
WAIT STA [Axis] & 0x0400 ; Wait for motion to stop
DELAY 1000 ; Wait one second for motor to settle

; Initialize the axis position.
POS [Axis] = POS [Axis] – INDEX [Axis] - HomeOffset

; Restore position limits.
FLIMIT [Axis] = Fsave
RLIMIT [Axis] = RSave

RETURN

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

43

PARAMETERS SAVING AND RESTORING

Designing a motion control system requires some of the system parameters to be stored in the
controller’s non-volatile memory. The Logosol servo controller uses FLASH memory based disk emulator
and the firmware supports the file oriented input / output operations.

The format in which the parameters are saved depends on the way they are going to be restored.
Basically, there are two alternatives to completing this task:

- Interpreting of a “command” file by the command EXEC. This approach requires parameters to be
stored as commands that if executed will set the given parameter. The advantage of this approach is
that the parameter file is easy to read and the location of the parameters is not important. The
disadvantage is that writing procedure is more complex and the parameter file is longer.

- Storing the data in a file as a sequence of numbers and parsing the file with the _read command.
The advantage of this approach is that the parameter file is more compact, but the file is hard to read
and the order of the parameters is fixed.

The example below illustrates how you could save speed and acceleration parameters of axis X:

; Name: SaveParsX
;
; Parameters: none
;
; Description: Save current speed/acceleration of axis X

PROC SaveParsX
_OPEN pars1.dat, w+ ; Create a file called pars1.dat
_WRITE “VEL X = “, VEL X
_WRITE “ACC X = “, ACC X
_CLOSE ; Close the parameter file
RETURN

The above example creates a file called PARS1.DAT with the following contents:

VEL X = 1000
ACC X = 2000

If the speed and acceleration are to be restored from this file the following command must be executed:

EXEC pars1.dat

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

44

Here is an example of storing the same parameters as a series of numbers (assuming it corresponds to a
pre-defined format):

; Name: SaveParsX
;
; Parameters: none
;
; Description: Save current speed/acceleration of axis X

PROC SaveParsX
_OPEN pars1.dat, w+ ; Create a file called pars1.dat
_WRITE VEL X
_WRITE ACC X
_CLOSE ; Close the parameter file
RETURN

Here is how the parameters should be restored from this file:

; Name: RestoreParsX
;
; Parameters: none
;
; Description: Restore speed/acceleration of axis X

PROC RestoreParsX
_OPEN pars1.dat, r
_READ “%ld”, VEL X
_READ “%ld”, ACC X
_CLOSE
RETURN

Note

The length of all the parameter files stored in the FLASH-disk emulator should not
exceed 40 Kbytes. If larger files have to be saved, contact Logosol about different
FLASH-disk options.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

45

PONT-TO-POINT MOTION

The trajectory control commands specify the mode of motion (position, velocity or interpolation), target of
the motion and also the beginning and end of the motion.

PROFILE Specify trapezoidal or S-velocity profile

ARC Request arc interpolation

LINE Request line interpolation

ABSOLUTE Request target for position mode

RELATIVE Request relative target for position mode

GO Start requested motion

VSPEED Desired vector velocity

VACCEL Desired vector acceleration

XAXIS Axis identifier corresponding to the X coordinate

YAXIS Axis identifier corresponding to the Y coordinate

POSITION-VELOCITY-TIME MOTION

The Position-Velocity-Time (PVT) mode of operation is a flexible mechanism for execution of complex
trajectories. It is based on a set of points defining where and with what speed the axis should be at a
given moment. Every two consecutive points define one segment of the desired trajectory. The PVT
control algorithm calculates the axes velocity profile for every segment and takes care for the smooth
transition from one segment to the next.

The definition of the PVT trajectory is described in a variable length structure. The header of this
structure defines the number of the following fields and their type.

As the MCL language does not support complex data structures, the PVT definition is described below as
number of cells from one-dimensional array with specific indexes.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

46

The PVT definition structure has the following common format:

Header

Axes List

Segment List

The PVT header has the following format:

Index Description

0 Number of axes to be synchronized (NumAxes)

1 Number of segments (NumSegments)

2 Round factor

The following list of axes is included after the header of the specified PVT trajectory (the number of the
axes is defined at index 0 as NumAxes):

Index Description

3 Index of the first axis

4 Index of the second axis

… …

NumAxes + 2 Index of the last axis

The next list defines the target positions and the travel time for the first segment. This definition is
followed by the same type of definition for the next segment and so forth. The number of segments to be
described is defined at index 1 as NumSegments.

Index Description

NumAxes + 3 Travel time

NumAxes + 4 Target position of the first axis

.

2 * NumAxes + 3 Target position of the last axis

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

47

SUPERVISOR MACRO IMPLEMENTATION

The Supervisor macro is intended to provide a mechanism for implementation of functionality similar to
that of a PLC controllers. Unlike the normal execution of the macros in background or foreground tasks,
the Supervisor macro is executed completely within a single time slice. It runs independently from the
other tasks and could be used for implementation of control algorithms that run in parallel with the motion
control procedures.

The supervisor macro is supposed to implement the functionality of a state machine. Every time slice it
could check the inputs, the internal state and generate an output, which could be new digital output
status and new internal state.

The firmware does not have a reserved macro name for “supervisor” macro. Instead, there is a
command called SUPERVISOR that specifies the name of the macro to be executed every time slice.
This way you could have as much supervisor macros as the number of internal states your state machine
should have. This way the transition from one state to another is implemented by setting the
corresponding “supervisor” macro.

The example below illustrates this technique with two-state machine. The transition from one state to
another is controlled by the state of the input InSensor1. Setting the output RedLED indicates the current
state of the machine.

PROC State1
IF IN [InSensor1] == 1

SUPERVISOR State2
OUT [RedLED] = 1

ENDIF
RETURN

PROC State2
IF IN [InSensor1] == 0

SUPERVISOR State1
OUT[RedLED] = 0

ENDIF
RETURN

Note

The supervisor task is non-preemptive and it will block the execution of any other
tasks until the supervisor macro is processed completely. That is why the length of
the supervisor macro should be as short as possible.

The supervisor task could communicate with the other tasks through the global variables. It is also
possible to start execution of a procedure in a background (SUBMIT command) from the supervisor task.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

48

ERROR HANDLING

The Servo Controller firmware provides sophisticated methods for handling the different types of errors
that might happen. They include Exceptions handling, Guard conditions and Internal Diagnostics.

Syntax Errors

The syntax errors are detected by the syntax analyzer during the processing of the system macros or
when processing a single command. Misspelled commands, wrong parameters (numbers), a missing
closing bracket, a missing match of IF and ENDIF statement, etc are considered syntax errors.

If a syntax error is detected in the system macro file, the processing of the file is interrupted and the
program does not continue. If the syntax error is detected when a single command is entered, then the
command is rejected and the prompt returned is a question mark (?), indicating a wrong syntax.

Motion Errors

The motion error occurs when the servo axis exceeds one or more of its limit parameters. The types of
motion errors are:

- positive (forward) limit position violation

- negative (reverse) limit position violation

- maximum position (following) error exceeded

- maximum position error derivative exceeded

- position counter overflow

After a motion error is detected the normal execution of the procedure is interrupted and an Exception
request is generated. The internal variable EC (Error Code) is set to indicate the corresponding reason
for the Exception.

Run-time Macro Execution Errors

The run-time macro errors could happen when some of the variables calculated during the program
execution are set to a value that is leading to an execution error. The types of run-time errors are:

- accessing an array cell out of the range (negative or too big index)

- dividing by zero

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

49

After a run-time error is detected the normal execution of the procedure is interrupted and an Exception
request is generated. The internal variable EC (Error Code) is set to indicate that the reason for
Exception is a run-time error.

Exceptions

Exceptions are abnormal events that happen during the operation of the machine. Possible exceptions in
the Logosol servo controller are:

- Guard condition violation (described later)

- Motion error (limit position violation, maximum error, etc.)

- Hardware error (amplifiers overload)

- Emergency button pressed

- Run-time macro execution error

An exception macro is a special routine, which is executed only when the internal protection decides that
a further execution of the normal operation is no longer possible. This is generally accompanied by
terminating the motion. In this macro, the user has to take care of additional actions necessary for safely
shutting down the system.

Guard Conditions

The GUARD statement installs a Boolean expression that is evaluated every time slice of the kernel. The
expression could be a combination of all signals that must be in a definite state during normal operation.
If one signal fails, the guard expression evaluates to false (0) and an exception event is generated.

The following example demonstrates a simple guard expression checking the state if an input – vacuum
sensor:

GUARD IN [VacuumSensor]

If the Guard condition check is no longer needed, GUARD command should be executed without
parameters.

Internal Diagnostic

The Internal Diagnostics provides information that is needed for the proper handling of an error or
Exception. The access to the diagnostic data is implemented through the following variables:

• Error Line (EL) – holds the line number of the currently executed procedure at the moment an error
is registered

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

50

• Error Axis (EA) – holds the index of the axis, which caused an error

• Error Time (ET) – holds the time when an error is detected

• Axis Status (STATUS) – indicates the reason of hardware protection activation (current overload, no
power, shortage of an output)

• Error Reason Code (RC) – holds a code indicating the source of the Exception

In addition there is a circular buffer logging the macros invoked as well as the Exceptions. Every entry in
this buffer has a time stamp. The content of the buffer is displayed with the HISTORY command. The
contents of the buffer can be saved to a file if a file name is supplied as a parameter to the HISTORY
command.

ABSOLUTE ENCODERS SUPPORT

The absolute encoders provide information about the position of an axis even after the power of the
controller is turned off. Encoder operation without external power is supported by a backup battery up to
one week following a power-down. In this “emergency power” mode the encoders are still keeping track
of the axis position. Having the information from the absolute encoders the controller is capable of
implementing sophisticated algorithms to recover from unexpected or emergency power-off situations.
Such recovery algorithms are required in all cases when the homing of the machine is impossible if
started from some particular configuration.

The supported absolute encoders are a combination of an incremental encoder and a multi-turn absolute
encoder. The communication with the absolute encoder is through synchronous serial interface. It
provides 32 bits of information for the current state of the encoder. The 24 bits return the current position
of the encoder and the rest 8 bits are indicating the status of the absolute encoder.

The command returning the position of the absolute encoder is called APOSITION. The status is
returned by the command ASTATUS. Look at the command reference for more details about the
command syntax and the meaning of the status bits.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

51

PID COEFFICIENTS OPTIMIZATION

The PID filter optimizer should be used exclusively during calibration or when considerable
changes in machine mechanics or the payload are made. It is recommended to start the
optimizer with relatively low current filter parameters, e.g. KP = 80, KD = 1000, KI = 80,
IL = 70 and to perform no more than 10-15 iterations (see the parameter IterNo below).

Name: OPT - starts the PID-filter optimizer

Syntax:

OPT Axis [, Path, IterNo, Smpl, DefPars]

The arguments in square brackets are optional

Parameters:

Axis the axis to be optimized

Path the relative path to be executed

IterNo number of iteration (usually greater than the number of cycles)

Smpl number of samples to be recorded and used in calculating the criterion

DefPars default initial parameter values. If this parameter presents, the optimization
starts with the following values for the filter parameters: KP = 80, KD = 800,
KI = 50 and IL = 50

Note

Path, IterNo, Smpl and DefPars are optional. The minimum parameter call of OPT is
OPT Axis. The default values for the optional parameters are Path = 5000, IterNo =
10, Smpl = 255 and DefPars = _NA (Not Available).

Example:

The following example optimizes the R axis parameters, performing 10 cycles of 10 inches
relative motions, uses 255 samples to calculate the criterion starting from the current PID
filter parameter set:

OPT R, 10000, 10, 255, 1

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

52

Macro Source Code:

PROC OptProc Axis, Path, Smpl, IterNo, Cntr, MinC
PRINT "Number of samples: ", Smpl, #10
PRINT "N KP KI KD IL Criterion", #10
RefPos = POS Axis
MinC = 999999999
bakK [0] = KP Axis
bakK [1] = KI Axis
bakK [2] = KD Axis
bakK [3] = IL Axis
optK [0] = KP Axis
optK [1] = KI Axis
optK [2] = KD Axis
optK [3] = IL Axis
IF IterNo < 0
 LoopNo = 0
 CntKP = 0
loop_KP:
 CntKD = CntKP
loop_KD:
 KP Axis = bakK [0] + CntKP * (RangeKP / 4)
 KD Axis = bakK [2] + CntKD * (RangeKD / 4)
 LoopNo = LoopNo + 1
 PRINT "Initial Parameter Set No. ", LoopNo, #10
ENDIF
KI Axis = bakK [1]
IL Axis = bakK [3]
Cntr = 0
TUNE -1
opt_loop:
REL Axis = Path
RECORD Smpl, _TS, Axis
GO Axis
WAIT !(STA [0] & 0x00200000) && (STA [0] & flgStop)
ABS Axis = RefPos
GO Axis
oldK [0] = KP Axis
oldK [1] = KI Axis
oldK [2] = KD Axis
oldK [3] = IL Axis
TUNE Axis ; call the optimizer
IF Criterion == -3
 WaitStop Axis
 GOTO opt_loop
ENDIF
Cntr = Cntr + 1
PRINT Cntr, ": ", oldK[0]," ", oldK[1], " ", oldK[2], " ", oldK[3], " : "

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

53

IF Criterion >= 0
 IF Criterion < MinC
 MinC = Criterion
 optK [0] = oldK [0]
 optK [1] = oldK [1]
 optK [2] = oldK [2]
 optK [3] = oldK [3]
 ENDIF
 PRINT Criterion, #10
ELSE
IF Criterion == -1
 PRINT MinC, " - Local optimum found!", #10
 GOTO end_label
ELSE
IF Criterion == -2
 PRINT "Limits violation ...", #10
 IF Cntr == 1
 GOTO end_label
 ENDIF
ELSE
IF Criterion = -4
 Print "Oscilations ...", #10
ENDIF
ENDIF
ENDIF
ENDIF
WaitStop Axis
IF IterNo < 0
 IF Cntr < 20
 GOTO opt_loop
 ENDIF
ELSE
 IF Cntr < IterNo
 GOTO opt_loop
 ENDIF
ENDIF

end_label:
PRINT "---------------------------", #10
IF IterNo < 0
 CntKD = CntKD + 1
 IF CntKD < 3
 GOTO loop_KD
 ENDIF
 CntKP = CntKP + 1
 IF CntKP < 3
 GOTO loop_KP
 ENDIF
ENDIF

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

54

KP Axis = optK [0]
KI Axis = optK [1]
KD Axis = optK [2]
IL Axis = 0
IL Axis = optK [3]
PRINT #10, "KP=",KP Axis, " KI=",KI Axis, " KD=",KD Axis, " IL=",IL Axis
PRINT " : ", MinC, #10, "End of optimization", #10, #62
RETURN

Macro OPT Axis, Path, IterNo, Smpl, DefPars, AbsPath
; Parameters:
; Axis the axis to be tuned
;
; Path the relative path to be executed
;
; IterNo number of iteration (usually greater
; than the number of cycles)
;
; Smpl number of samples to be recorded and used
; in calculating the criterion;
;
; DefPars if present the optimization procedure
; starts with the following initial
; values of the PID-filter parameters:
; KP = 80, KD = 800, KI = 50, IL = 50
; otherwise the current parameters
; remain
;
; Remark: Path, IterNo, Smpl and DefPars are optional.
; The minimum parameter call of OPT is OPT Axis.
; The default values for the optional parameters are:
; Path = 5000, IterNo = 10, Smpl = 255 and DefPars =_NA.

IF Path == _NA
 Path = 1000
ENDIF
AbsPath = Path
IF Path < 0
 AbsPath = - Path
ENDIF
IF IterNo == _NA
 IterNo = 35
ENDIF
SUBMIT OptProc Axis, Path, 512, IterNo
RETURN

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

55

VIII. Motion Control Language Reference

This chapter describes the syntax and the function of all keywords – program statements, system
commands and system variables of the MCL programming language.

COMMAND CATEGORIES

Commands Overview

The MCL programming is similar to using high-level language interpreters. The MCL source file is in
ASCII text format. The file is loaded and preprocessed into a program buffer in binary codes. The MCL
program is executed by the kernel, which translates the binary codes to LMC actions and flow control
instructions.

Mainly, there are three groups of commands depending on their accessibility. The first group involves
commands intended for system control: environment setup, loading and executing of MCL programs.
These commands can be executed only from the command line. They are not available for MCL
programs. One command category belongs to this group:

• System control

The second group consists of commands controlling program execution flow control and definition of
MCL program items: variables, procedures, and macros. These commands are intended for use in
programs only. They are not available from the command line. All commands of this group belong to the
following category

• MCL program statements

The third group consists of commands interacting with the LMC boards. They are available either from
the command line or from the MCL program. The following command categories belong to this group:

• Motion control parameters

• Run time parameters

• Interpolation parameters

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

56

• System parameters

• Motion commands

• Servo boards control

• Error handling

• File I/O functions

All command categories and commands that they involve are described below.

System Control Commands

The system control commands are intended for basic system operations like exit to DOS, invoking of file
transfer utilities, redirection of command stream or getting help for commands. This command category
includes the following statements:

QUIT Stop motion and exit to DOS

DOS Start a DOS shell

DOWNLOAD Receive a file from remote computer

UPLOAD Send a file to remote computer

VERSION Display MCL version number

Program Control Statements

MCL program statements provide the necessary features for creating complex macro commands or
implementing long algorithms. The program control statements are:

MACRO Start new macro definition

PROCEDURE Start new procedure definition

RETURN Return to the calling macro or procedure

GOTO Go to a specified label

WHILE - ENDWHILE Loop with pre-condition

IF - ELSE - ENDIF Conditional branch

WAIT Wait until a condition is met

DELAY Delay execution with the specified time

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

57

Motion Control Parameters

The motion parameters specify how the axes are to be moved. They should be set properly before
starting a motion. The parameters specify the PID filter coefficients, the velocity and acceleration for the
trapezoidal velocity profile and the limitations - the maximum position error, the maximum forward and
reverse positions. All motion parameters could be changed during the motion except for the acceleration
(the result will not take effect until the next move).

Commands are provided for saving and restoring motion parameters. They use an ASCII text to
represent the parameter names and their values. Thus they could be edited easily.

The commands belonging to this group are:

VELOCITY Desired velocity

ACCELERATION Desired acceleration

DECELERATION Desired deceleration

AJERK Desired acceleration jerk

DJERK Desired deceleration jerk

FLIMIT Forward limit position

RLIMIT Reverse limit position

MAXERROR Maximum position error

DS PID filter derivative sampling interval

KP Proportional coefficient

KI Integral coefficient

KD Differential coefficient

IL Integration limit

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

58

Current Axis Parameters

The run-time parameters describe the actual axis information. It alters during the axis motion. This
information involves the current axis position, velocity, position error, status and index position. The
commands reporting the run-time parameters are:

POSITION Axis current (actual) position

INDEX Axis index position

ERROR Axis position error

TACHOMETER Axis current (actual) velocity

STATUS Axis and system information

APOSITION Axis absolute encoder position

ASTATUS Absolute encoder status

LINDEX Axis latched index potision

It is important that the value returned by the Status command consists of two parts. The lower 16 bits
contain axis-specific information and the upper 16 bits contain system specific information (common to
all axes).

System Parameters

The System parameters specify the MCL behavior. They determine the command interpreter responses
after processing a command. The response definition is controlled by a parameter with 20 bit-mapped
options.

Other system-wide parameters determine scaling of the axis positions, i.e. translation of user defined
units into encoder counts. There are two scaling coefficients that correspond to linear and rotational axis
coordinates. These coefficients allow easy conversion from inches to millimeters and vice versa.

The following commands control the system parameters:

INFO Specify response mode - verbal, numeric

REPORT Define 20 bit-mapped response options

SCALE Specify scaling coefficients

_EM Exception event disable mask

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

59

Servo Boards Control Commands

The boards setup commands are intended for control of the LMC power supply, the servo loop, the
digital inputs and outputs, the selection of an index source and the latching of an index position. The
RESET command resets not only the LMC boards but the computer too. The Power command performs
controller diagnostics and does not switch on the power if a hardware problem is detected.

SERVO and NOSERVO commands allow a single axis to be specified.

POWER Switch on power supply to LMC boards

NOPOWER Switch off power supply

SERVO Close hardware servo loop

NOSERVO Suspend servo control

IN Get digital input state

OUT Set/Get digital output

STROBE Select index strobe source

LATCH Enable latching of next index strobe

RESET Reset servo boards and CPU

Error Handling Commands

The commands in this category are needed for proper handling of different kinds of errors that could
occur during controller operation. The commands are:

EXCEPTION Set the exception handling macro

_EM Exception event disable mask

EL Return the execution error line number

RC Return reason code for an exception event

STOP/HALT Stop motion and macro execution

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

60

File I/O Functions

The File I/O functions provide simple means for storing or retrieving calibration or configuration data
from the controller FLASH based disk emulator. They could be used also for communication to other
devices through the standard DOS device drivers.

The file-oriented functions are:

_OPEN Open a file

_CLOSE Close file

_READ Read formatted data from a file

_WRITE Write formatted data to a file

_PEEK Returns the number of bytes in the input file buffer.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

61

COMMANDS BY NAME

ABSOLUTE

Synopsis Defines axis target position.

ABSOLUTE {axis = target}
ABSOLUTE {axis}
variable = ABSOLUTE axis

axis Defined name or index of an axis
target Target position

Description The ABSOLUTE variable defines a new target position for a subsequent GO command.

The command requests position mode of motion and overwrites any motion requests
defined by other commands as RELATIVE, FORWARD, REVERSE, LINE and ARC.

If more than one axis has absolute target position specified and the profile mode is 1
(see PROFILE parameter) the motion will be synchronized. That means if you have X/Y
stage and specify absolute target for X and Y the stage will perform straight-line motion.

Example

>ABSOLUTE x=200 z=300 y=100
>ABSOLUTE
X=200
Y=100
Z=300
>GO
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

62

ACCELERATION

Synopsis Defines desired axis acceleration.

ACCELERATION {axis = value}*
ACCELERATION {axis}
variable = ACCELERATION axis

axis Defined name or index of an axis
value Desired acceleration

Description The ACCELERATION is an axis variable defining desired accelerating and decelerating
rate.

The acceleration must be greater than zero for a motion to start. If the desired
acceleration is exceeding the resources of the mechanics and the controller then either
the maximum position error will exceed its limit or the amplifiers current protection will
shut down the power of the motors.

Example

>ACCELERATION x=1000 y=1500 z=300
>ACCELERATION
X=1000
Y=1500
Z=300
>xacc = ACCELERATION x
>xacc
1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

63

AJERK

Synopsis Defines the desired acceleration jerk for S-velocity profile.

AJERK {axis = value}*
AJERK {axis}
variable = AJERK axis

axis Defined name or index of an axis.
value Define the acceleration jerk used for moving the axis.

Description The jerk is the first-time derivative of the acceleration. During motion using the S-
velocity profile the acceleration jerk defines the smoothness of the acceleration profile.

The meaningful range of values for the acceleration jerk is from 0 to 1000. This
parameter has no effect if trapezoidal velocity profile is selected.

Example

>AJERK x=1000 y=1500 z=300
>AJERK
X=1000
Y=1500
Z=300
>xajk = AJERK x
>xajk
1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

64

ARC

Synopsis Requests two axis coordinated motion on circular trajectory.

ARC EndX, EndY, RdX, RdY, Dir*

EndX, EndY End point of trajectory
RdX, RdY Coordinates of circle center relative to current position
Dir Direction of arc interpolation 0 – CCW, 1 – CW

Description Axes performing interpolation are determined by variables XAXIS and YAXIS.

VSPEED and VACCEL define the speed and acceleration during the interpolation mode
of motion. These variables have to be set to the corresponding axes indexes that will
perform ARC motion.

Motion requests specified by ARC and LINE commands are stored in a dedicated buffer
that is intended for storing a complex motion trajectory definition, consisting of multiple
lines and arcs. Execution of such motion trajectory is started with the GO statement.

ARC command overrides pervious motion requested by ABSOLUTE, RELATIVE,
FORWARD, REVERSE , LINE or PVT commands.

Examples

>XAXIS = X
>YAXIS = Y
>VSPEED = 1000
>VACCEL = 500
>ARC 500, 1200, 100, 100, 0
>GO
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

65

APOSITION

Synopsis Returns the absolute encoder position.

APOSITION {axis}
variable = APOSITION axis

axis Defined name or index of an axis.

Description The variable returns the axis coordinate as preserved by an absolute encoder. See
Absolute Encoder Application notes for more details about the use of APOSITION
command.

Examples

>APOSITION X
X=120089
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

66

ASTATUS

Synopsis Returns the absolute encoder status.

ASTATUS {axis}
variable = ASTATUS axis

axis Defined name or index of an axis.

Description The ASTATUS variable returns the status of an absolute encoder. The data is returned
as s decimal number. The meaning of the status bits is described in the following table:

Bit Hex Mask Description

0 00000001 Encoder read error

1 00000002 Encoder needs “pre-load”

2 00000004 Battery low

3 00000008 Encoder maximum speed exceeded

4 00000010 Encoder overflow

5 00000020 Battery error

6 00000040 Checksum error

7 00000080 Absolute encoder not installed

See Absolute Encoder programming examples for more details about the use of
ASTATUS command.

Examples

>ASTATUS X Y
X = 0
Y = 0
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

67

BIAS

Synopsis Defines the motor output bias.

BIAS {axis=value}
BIAS {axis}
variable = BIAS axis

axis Defined name or index of an axis.
value Motor output bias

Description The BIAS variable sets the PID filter DC bias value. It is used to offset the constant
unidirectional forces (typically a vertical axis which is not balanced by a counter-weight).
The specified motor bias value is added directly to the output of the servo filter.

The motor bias has a range of –32767 to 32767.

Examples

>BIAS Y=100 X=200
>BIAS X Y
X=200
Y=100
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

68

CONST

Synopsis Defines a global constant in a macro file.

CONST {Identifier Value}

Identifier Any valid identifier
Value A number

Description Constants are 32 bits signed integer numbers. They are useful to associate names with
frequently used numbers or flags.

Examples

CONST inch 254
CONST ArmLength 10500
CONST FullTurn 36000

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

69

CLIMIT

Synopsis Defines the current limit for motor amplifier.

CLIMIT {axis=value}
CLIMIT {axis}
variable = CLIMIT axis

axis Defined name or index of an axis.
value Current limit

Description This parameter sets the current limit of the servo amplifiers. If this limit is exceeded for
more than a 100 ms the amplifier power will be turned off.

The current limit of the servo amplifiers can be set in the range of 2 ÷ 10 A with 4-bit
precision. The values are dimensionless quantities in the range zero to fifteen. The value
of 0 sets the current limit to the lowest level (less than 1 A). The value of 16 sets the
current limit to the highest level – 10 A.

Examples

>CLIMIT X
X = 8
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

70

DECELERATION

Synopsis Defines the deceleration for S-velocity profile.

DECELERATION {axis = value}
DECELERATION {axis}
variable = DECELERATION axis

axis Defined name or index of an axis
value Deceleration value

Description The DECELERATION variable specifies the desired maximum deceleration to be
applied. This parameter is used only when S-velocity profile is set.

DECELERATION units are specified as distance / sec2.

Example

>DECELERATION x=1000 y=1500 z=300
>DECELERATION
X=1000
Y=1500
Z=300
>xdec = DECELERATION x
>xdec
1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

71

DEFINE

Synopsis Defines expression.

DEFINE name expression

name Unique identifier
expression Expression definition

Description DEFINE allows you to associate unique name for an expression that is used frequently.
After the name is defined it could be used instead of the expression.

The defined name is treated as a read only variable.

Examples

DEFINE AxisMoving ((Status X & $0400) == 0)

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

72

DELAY

Synopsis Delays execution of a macro.

DELAY time

time Delay time in milliseconds

Description The DELAY statement defines the further execution of a procedure. The accuracy of the
requested delay depends on the specified time slice for the motion control kernel.

Examples The following example alters an output state every second:

PROC AlterOut OutID
again:
OUT [OutID] = ! OUT [OutID]
DELAY 1000 ; Delay execution for 1 second
GOTO again ; Endless loop
RETURN

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

73

DJERK

Synopsis Defines the deceleration jerk for S-velocity profile.

DJERK {axis = value}
DJERK {axis}
variable = DJERK axis

axis Defined name or index of an axis.
value Deceleration jerk

Description The jerk is the first-time derivative of the deceleration. During motion using the S-
velocity profile the deceleration jerk defines the smoothness of the deceleration profile.

The meaningful range of values for the deceleration jerk is from 0 to 1000. This
parameter has no effect if trapezoidal velocity profile is selected.

Example

>DJERK x=1000 y=1500 z=300
>DJERK
X=1000
Y=1500
Z=300
>xjk = DJERK x
>xjk
1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

74

DOWNLOAD

Synopsis Starts external file transfer protocol to download a file.

DOWNLOAD [filename]

filename Name of the file to download

Description The DOWNLOAD command provides interface to a file transfer utilities.

The command starts file transfer program specified in the [SYSTEM] section of the
configuration file, following Download keyword. The name of the file to be transferred is
send as a command line parameter.

Examples

DOWNLOAD WhatCame.Dat

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

75

DS

Synopsis Defines the PID filter derivative sampling interval in microseconds.

DS {axis = sampling_interval}
DS {axis}
variable = DS axis

axis Defined name or index of an axis.
sampling_interval Derivative sampling interval in microseconds

Description The DS parameter may be in the range between 100 and 65536. It defines the time
interval in microseconds between two adjacent samples of the encoder feedback to be
used by the motion control processor.

The actual sampling interval set depends on the capabilities of the servo control
processor installed. If the requested time interval is not available the closest available
value will be set.

Examples

>DS x=256 y=512
>DS x y
X=256
Y=512
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

76

EA

Synopsis Returns the index of the axis caused exception.

Description If an axis motion stops for any unexpected reason, or limit position or
maximum position error is violated the index of the axis caused error will be
retained in the EA variable. EA is read-only variable.

Examples

>EA
2
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

77

EC

Synopsis Returns the code of the last command error.

Description The EC variable contains an error code that could be helpful for identifying the cause for
the stop of the motion or an interrupt of the macro execution. EC is read-only variable.
The table below lists the error codes:

Code Description

0 No Error

10 Illegal motion control driver parameters

11 Motion control driver time out

12 Missing or bad servo board

13 Unable to turn on servo amplifiers power

30 Label cannot be declared

31 Bad label format

32 Label already defined

33 Unknown command

34 Command allowed only in procedure

35 Maximum number of commands exceeded

36 Bad command parameters

37 Identifier redefinition

38 Line overflow

39 Illegal command syntax

40 Procedure definitions cannot be nested

41 Procedure definition ends without RETURN

42 Maximum number of nested IF statements exceeded

43 No correspondent IF statement

44 Missing ENDIF statement

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

78

Code Description

45 Maximum number of nested WHILE statements exceeded

46 No correspondent WHILE statement

47 Missing ENDWHILE statement

50 Unable to open file

51 Unable to read file

52 Insufficient memory to process file

60 Insufficient memory

61 STDIO operation

62 File I/O operation

63 Serial channel operation

64 Module reentrance determined

65 No open file for closing

69 Non existing procedure line number

72 Procedure execution not started

73 Line number required

75 File name required

76 Object required (Axes/procedures/Inputs/Outputs/Constants)

77 Sample number required

78 Command not allowed in resident mode

80 Invalid stack frame

81 Stack overflow

82 Stack empty

83 Go to undefined label

84 Motion control driver error

85 Invalid command index

86 Expression calculating

87 Jump out of range

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

79

Code Description

88 Command not allowed during procedure execution

90 Controller has no power

91 Servo loop not closed

100 Index value out of range

101 Setting axis variable

102 Getting axis variable

103 Divide by zero

104 Internal expression error

105 Input cannot be set

110 Unknown expression component

111 Unknown identifier

112 No closing index bracket -]

113 No closing expression bracket -)

114 Invalid index expression

115 Invalid constant

116 Invalid operator usage

117 Too long identifier

Examples

>EC
65
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

80

EL

Synopsis Returns the line number where procedure execution has stopped.

Description If a procedure stops for any reason, the line number of the most recently
processed command in the currently executed procedure file will be retained
in the internal EL variable. EL is read-only variable.

Examples

>EL
217
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

81

ENCODER

Synopsis Returns the number of encoder counts per revolution.

ENCODER {axis}
variable = ENCODER axis

axis Defined name or index of an axis.

Description The ENCODER variable returns the number of encoder counts per revolution. This value
represents the setting defined during axis description in the configuration (INI) file.

Examples

>ENCODER
X=2500
Y=2500
Z=2500
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

82

ERROR

Synopsis Returns the current position error.

ERROR {axis}
variable = ERROR axis

axis Defined name or index of an axis.

Description The ERROR variable returns the most recent position error determined by the servo
control processor. It is equal to the difference between the current position and the
desired position.

Examples

>ERROR
X=54
Y=30
Z=18
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

83

ET

Synopsis Returns the error time.

Description If a procedure stops abnormally for any reason, the internal timer value is stored in the
ET variable. The value of ET is the number of timer ticks of the internal clock passed
since the start of the MCL software.

Examples

>ET
217452
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

84

EXCEPTION

Synopsis Installs a macro as user defined exception macro.

EXCEPTION [MacroName]

MacroName Macro name

Description The macro specified by the EXCEPTION command is set as an error handler. The
motion control kernel starts it upon detection of a critical event.

The following events cause the activation of the exception macro:

• Software limit position violation (FLIMIT and RLIMIT)

• Amplifiers power turned off

• Guard condition evaluates to false

• Exceeded maximum position error

The exception macro is intended to take precautions to activate actions that might be
necessary to prevent damage to the complete system. Apart from other actions the host
computer should be informed correctly and a working process of the master system
might be stopped.

If no macro name is specified the exception routine is replaced by a default macro with
the following contents:

MACRO DefaultException
HALT

RETURN

Examples
MACRO RescueMe

HALT
NOSERVO
NOPOWER
; ... more statements ...

RETURN

>EXCEPTION RescueMe

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

85

EXEC

Synopsis Executes commands from a text file.

EXEC [FileName]

FileName Name of the file to be used

Description The command EXEC opens a file and process every line as a command entered from
the console of the host computer. This command could be used if you want to restore a
set of parameters from a file. The executed macros are NOT stored in the RAM for
further use.

Examples

>EXEC params.dat
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

86

FLIMIT

Synopsis Defines the positive limit position.

FLIMIT {axis = limit}
FLIMIT {axis}
variable = FLIMIT axis

axis Defined name or index of an axis.
limit Limit position or NOLIMIT

Description The FLIMIT variable is an axis parameter, specifying the maximum position in forward
direction the axis is allowed to go to. If this limit is exceeded the kernel generates an
exception and the motion is stopped. This variable is intended to provide software limit
of the range of motion for an axis.

There is a predefined constant NOLIMIT that deactivates limit position check. It is equal
to zero.

Examples

>FLIMIT x=12000 y=360000 z=7000
>FLI
X=12000
Y=360000
Z=7000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

87

FORWARD

Synopsis Requests jogging forward.

FORWARD {axis}
axis Defined name or index of an axis.
speed Specify the velocity to be used to move the axis.

Description The command requests axis motion in velocity mode (also called jogging). Motion starts
after the execution of a GO command.

The command overwrites any motion requests defined by other motion commands like
RELATIVE, ABSOLUTE, REVERSE, LINE or ARC.

Examples

>POS X
1800
>VEL X=1000
>FOR X
>FOR Y
GO ; Both X and Y should move now
>POS X
2000
>POS X
2760
>HALT X Y ; Neither X nor Y will move
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

88

GO

Synopsis Starts motion.

GO {axis}

axis Defined name or index of an axis.

Description The command GO starts a motion. Any of the commands ABSOLUTE, RELATIVE,
FORWARD, REVERSE, PVT, LINE or ARC request the motion that will be performed,
but no action is taken until the motion is started with a subsequent GO command.

The type of axis motion is determined by the last issued motion request command:

Command Motion mode requested

Absolute/Relative Position mode

Forward/Reverse Velocity mode (jogging)

Line/Arc Interpolation mode

PVT PVT Mode

If no axis is specified as a parameter for the GO command all axes having motion
requests are started to their respective targets.

Examples

>FOR X
>POS X
3000
>POS X
3000
; nothing happened; now start motion with Go
>GO X
; wait again for a little while, axis should move meanwhile
>POS X
3500
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

89

GOTO

Synopsis Unconditional jump to the specified label.

GOTO label

label Any label appearing in the current procedure

Description GOTO is a program statement executing unconditional jump to a predefined label. The
labels are local for every procedure.

Examples

Loop1: ; label definition in separate line
ABS X=1000 ; any command
. . . ; more commands
GOTO Loop1 ; jump to the label

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

90

GUARD

Synopsis Installs expression as user defined exception condition.

GUARD [expression]

expression Expression that evaluates to false, if the system is in a critical situation.

Description The GUARD command is intended to provide user-defined condition to be verified every
time slice. If such a condition occurs the normal execution of the macro is interrupted
and the exception macro is started.

There is a dedicated flag in the STATUS word to reflect GUARD violation.

The GUARD expression is meant to define a logical expression that describes the
normal (uncritical) state of a selected set of signals, usually a set of input signals.

If no expression is specified, evaluation of expression is terminated.

Examples

GUARD IN[VacValve] == 0
; The above expression will initiate exception if the vacuum
; valve input detects that the vacuum is off.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

91

HALT

Synopsis Stops motion with the programmed deceleration.

HALT {axis}

axis Defined name or index of an axis.

Description The HALT command stops the axis smoothly, with the programmed deceleration. If no
axis is specified then all axes are stopped and any procedure being executed is
terminated.

If you need to stop an axis abruptly in an emergency situation, use the STOP command.

Note that you should not use the HALT command in a procedure without parameters. If
you do so the HALT command will be the last one executed from the procedure – it will
terminate the procedure execution.

Examples

>HALT X ; decelerate axis X to a standstill
>HALT ; Stop procedure execution and any motion
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

92

HISTORY

Synopsis Shows the history of the invoked macros and exceptions.

HISTORY {HistoryLines| FileName}

FileName Valid DOS filename to open
HistoryLines Number of history line to be returned

Description The HISTORY command displays the 50 most recently started macros or exceptions.

The recorded statements are displayed in order of execution.

If no HistoryLine is specified all samples are displayed continuously starting with the line
following the last displayed line.

If a FileName is specified then the history is stored to the file. If a file with the same
name exists it is overridden

Examples

>HISTORY
Prompt [81] STA Timer=16.422
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

93

IF - THEN - ELSE

Synopsis Provides conditional branch in the macro.

IF expression

{statements}

[ELSE

{statements}]

ENDIF

expression An expression that evaluates to 0 if and only if the condition is false

Description The IF - ELSE - ENDIF statements provide standard mechanism for conditional branch.
The number of the nested IF statements should not exceed 80.

Examples

IF IN VacuumSwitch == 1
InsertObject

ELSE
InformOperator

ENDIF

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

94

IL

Synopsis Defines the integral limit for the motion servo processor.

IL {axis}
IL {axis =integral_limit}

axis Defined name or index of an axis.
integral_limit Number between 0 and 32000

Description The IL limits the restoring force of the corresponding axis performed by the integral term
(KI). The integral limit defines an upper boundary, which the integral sum may grow to.

The complete set of motion parameters (KP, KI, KD, IL and DS) have to be in harmony
to control the overall behavior of the PID regulators of the servo control processor.
Choosing wrong values for the motion parameters may result in a strange behavior of
the axis such as jitter, vibrations or no motion at all.

Examples

>IL y=60 x=80
>IL x y
X=80
Y=60
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

95

IN

Synopsis Returns the current state of an input.

IN {inputname}

inputname Predefined input name or expression that evaluates to a valid input
number

Description The IN variable returns the state of a predefined input. It must be one of the defined
inputs in the INI file. You could use either the name of the input or its index.

If the command is used without any parameter at all, the actual definitions for all defined
inputs are reported.

Examples

>IN VacuumSwitch
1
>xSwitch = IN VacuumSwitch
>xSwitch
1
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

96

INDEX

Synopsis Returns the value of the index register.

INDEX {axis}

axis Defined name or index of an axis.

Description The INDEX variable returns the contents of the index register corresponding to the
specified axis. This register latches the current position of the axis upon the rising or the
falling edge of strobe signal selected. Refer to the STROBE command for details about
the selection of the strobe signals.

The command LATCH initiates the latching procedure. It has to be executed first in
order to enable the operation of the hardware.

Examples

DEFINE FlgIndex 0x0008
PROC GetIndex
LATCH X
REVERSE X
GO
WAIT (STATUS(X) & FlgIndex)
STOP X
RETURN INDEX X

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

97

INFO

Synopsis Sets the notification mode.

INFO informationmode

Informationmode NONE Respond only on request

DEC Respond as a decimal number

HEX Respond as a hexadecimal number

TEXT Respond as an ASCII string

Description The INFO command selects how you’d like to be notified about the asynchronous events
and if you want to have the name of axes displayed in a front of the axis parameter
requested.

If INFO TEXT is chosen, the status is decoded into a series of text strings showing the
status as a readable text. In addition when you request an axis variable value, the name
of the axis is displayed in a front followed by equal sign. If everything is correct i.e. a
zero status is returned, the corresponding text message will be OK.

Examples

>INFO HEX
>
0B40
>INFO NONE
>
>
>INFO TEXT
>
Procedure processor state: RUNNING
Executed procedure line 114
System timer contents 55123
System power on
System servo on
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

98

KD

Synopsis Defines the differential coefficient KD.

KD {axis = diff_coeficient}
KD {axis}
variable = KD axis

axis Defined name or index of an axis.
diff_coefficient Differential coefficient for the motion servo processor

Description The KD coefficient influences the smoothness of motion of the corresponding axis.

KD provides a force that is proportional to the rate of change of the position error.
Correct settings contribute to an appropriate damping resulting in less perturbation.

The complete set of motion parameters (KP, KI, KD, IL and DS) have to be in harmony
to control the overall behavior of the PID regulators of the servo control processor.
Choosing wrong values for the motion parameters may result in a strange behavior of
the axis such as jitter, vibrations or no motion at all.

Examples

>KD x=2000
>KD x
X=2000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

99

KI

Synopsis Defines the integral coefficient KI.

KI {axis = integral_coefficient}
KI {axis}
variable = KI axis

axis Defined name or index of an axis.
integral_coefficient Integral coefficient for motion servo processor

Description The KI coefficient provides a restoring force that grows with time and thus insures that
the static position error becomes and remains zero.

The complete set of motion parameters (KP, KI, KD, IL and DS) have to be in harmony
to control the overall behavior of the PID regulators of the servo control processor.
Choosing wrong values for the motion parameters may result in a strange behavior of
the axis such as jitter, vibrations or no motion at all.

Examples

>KI y=1000 x=2000
>KI x (x+1) y
X=2000
Y=1000
Y=1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

100

KP

Synopsis Defines the proportional coefficient KP.

KP {axis = prop_coefficient}
KP {axis}
variable = KP axis

axis Defined name or index of an axis.
prop_coefficient Proportional coefficient for the motion servo processor

Description The KP coefficient provides a restoring force proportional to the position error.

KP is used each time the PID regulators detect a deviation between the expected target
and the actual position.

The complete set of motion parameters (KP, KI, KD, IL and DS) have to be in harmony
to control the overall behavior of the PID regulators of the servo control processor.
Choosing wrong values for the motion parameters may result in a strange behavior of
the axis such as jitter, vibrations or no motion at all.

Examples

>KP y=1000 x=2000
>KP x (x+1) y
X=2000
Y=1000
Y=1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

101

KPHASE

Synopsis Defines the velocity phase advance gain.

KPHASE {axis=value}
KPHASE {axis}
variable = KPHASE axis

axis Defined name or index of an axis.
value Velocity phase advance gain.

Description The KPHASE variable specifies the velocity phase advance gain. The value specified
has an allowed range of 0 to 32767. This parameter can be changed on the fly if desired.

This variable is meaningful for brushless servo control boards only.

Examples

>KPHASE X = 100
>KPHASE X
X=100
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

102

LATCH

Synopsis Enables position latching of the next index strobe.

LATCH {axis}

axis Defined name or index of an axis.

Description The command LATCH is intended to setup the hardware for latching the current position
of the specified axis into a dedicated index register. The index register is accessible by
the INDEX variable. The source of the strobe signal to activate the latching is specified
by the STROBE variable.

Example

DEFINE FlgIndex 0x0008
PROC GetIndex
LATCH X
REVERSE X
GO
WAIT (STATUS(X) FlgIndex)
HALT X
RETURN INDEX X

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

103

LINE

Synopsis Requests linear interpolated motion.

LINE EndX, EndY

EndX, EndY End point X/Y positions.

Description Axes performing interpolation are determined by variables XAXIS and YAXIS. These two
variables have to be set with the indexes of the corresponding axes.

The speed, acceleration and maximum position error during the coordinated motion are
defined by VSPEED and VACCEL variables.

Motion requests specified by Arc and Line commands are stored in a dedicated buffer. It
is intended to store a complex motion trajectory definition, consisting of multiple lines
and arcs. Execution of such a motion trajectory is started with a Go statement.

The LINE command overrides the previous motion requested by the ABSOLUTE,
RELATIVE, FORWARD, REVERSE, ARC or PVT commands.

Examples

>XAXIS = X
>YAXIS = Y
>VSPEED = 1000
>VACCEL = 500
>LINE 5000, 2000
>GO
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

104

LIST

Synopsis Shows the source code of the currently loaded macro.

LIST [ProcOrMacro | LineNumber][, Count]

ProcOrMacro Name of the procedure or macro to be displayed
LineNumber First line number to be displayed
Count Number of lines to be displayed

Description The LIST command displays the source code of the requested procedure, macro or a
program fragment starting with the specified line number.

If no value for count is specified, 20 lines will be displayed.

Examples

>LIST Startup ; list the first 20 lines from macro Startup
>LIST 125 ; list 20 lines starting from line 125
>LIST 125,10 ; list 10 lines starting from line 125

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

105

 MACRO

Synopsis Defines macro.

MACRO macroname[,parameter {,parameter}]

macroname Valid and unique identifier
parameter Valid and unique identifier

Description The MACRO statement defines a macro name and its parameters. The macro definition
ends with a RETURN statement.

The maximum number of parameters is 10. Every parameter is considered optional. If a
parameter is not supplied a reserved constant (_NA) is set to it. Later in the macro you
could find if a parameter has valid setting by comparing its value with _NA.

Examples

; Sample macro with two parameters.
MACRO RCP Axis1 Axis2
IF Axis1 == _NA || Axis2 == _NA

PRINT POS X, “ “ POS Y
ELSE

PRINT POS Axis1, “ “, POS Axis2
RETURN

; Calling the macro.
>RCP X Y
2200
12000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

106

MAXERROR

Synopsis Defines the maximum allowable position error.

MAXERROR {axis=value}
MAXERROR {axis}
variable = MAXERROR axis

axis Defined name or index of an axis.
value Position error

Description The variable specifies the maximum units which are tolerable as a position error by the
servo processor. If the position error is greater than the value set with MAXERROR, the
user procedure will be stopped and the exception macro will be called.

The maximum value allowed is 32767 encoder counts. Setting of MAXERROR to 0 will
disable checking of position error.

Examples

>MAXERROR Y=1000 X=2000
>MAX X (X+1) Y
X=2000
Y=1000
Y=1000

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

107

MESPEED

Synopsis Specify the maximum allowable position error derivative.

MESPEED {axis=value}
MESPEED {axis}
variable = MESPEED axis

axis Defined name or index of an axis.
value Maximum error speed.

Description The MESPEED variable specifies the maximum position error derivative. The control of
this parameter helps for reducing the impact caused by a mechanism hitting an obstacle.

Examples

>MESPEED X=1000
>MESPEED X
X=1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

108

MLIMIT

Synopsis Defines the maximum motor power from the servo board.

MLIMIT {axis=value}
MLIMIT {axis}
variable = MLIMIT axis

axis Defined name or index of an axis.
value Maximum current.

Description The MLIMIT variable sets the maximum allowed motor command value output from the
PID filter. The command is useful when you want to avoid mechanical damage caused
by excessive power delivered from the servo board.

The range of MLIMIT is from 0 to 32767. If the magnitude of the PID filter output value
(whether positive or negative) exceeds the motor limit then the output value is
maintained at the motor limit value. Once the filter output value returns below the
specified limit then normal servo filter values are output.

Examples

>MLIMIT Y=1000
>MLIMIT Y
Y=1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

109

MOTOR

Synopsis Defines the direct output value supplied to the motor.

MOTOR {axis=value}
MOTOR {axis}
variable = MOTOR axis

axis Defined name or index of an axis.
value Motor output.

Description The MOTOR variable specifies an output value applied to the motor power amplifier
when the servo is turned off. The allowed range is from –32767 to 32767. The value of 0
indicates no motor power will be applied.

Examples

>MOTOR Y=1000
>MOTOR Y
Y=1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

110

NAME

Synopsis Shows the names of the specified objects.

NAME {DisplayObject}

DisplayObject A group of items out of the following:

AXES List all axes names

PROC List all procedure names in memory

MACRO List all macro names in memory

IN List all input names

OUT List all output names

VAR List all names of defined variables

CONST List all names of defined constants

DEFINE List all expressions defined with Define

Description The command allows you to obtain the names of the defined objects in the servo
controller. This command is useful to avoid the name conflicts.

If no DisplayObject is specified, all objects are displayed.

Examples

>NAME Proc ; lists defined procedures
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

111

NOPOWER

Synopsis Turns off the power.

NOPOWER

no parameters

Description The command NOPOWER turns off the power of the servo board. All outputs are
switched to their inactive state. The high voltage power relay is opened to disconnect the
controller from the external power supply.

The power to the encoders is retained after NOPOWER command, so you don’t have to
“home” the system next time the power is turned on.

Note that this command will turn off the servo amplifiers as well.

Examples

>NOPOWER
OK
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

112

NOSERVO

Synopsis Turns off the servo amplifiers.

NOSERVO {axis}

axis Axis name or index.

Description The command NOSERVO turns off the servo loop for the specified axis. Current axis
position remains valid because the encoder power is not turned off.

If a brake is associated with the axis, its power will be turned off as well in order to hold
the axis in its position and to prevent the mechanism from falling down.

If no axes are specified the servo control of all defined axes will be turned off.

Examples

>NOSERVO
OK
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

113

OUT

Synopsis Controls outputs.

OUT {outputname = outputstate}
OUT {outputname}

outputname Predefined output name or index
outputstate Output value

Description All outputs are defined in the configuration profile. They have name and active state.

The name could be used as a reference. The active state specifies how to be set an
activated output.

Examples

>OUT sw1=1 sw2=0
>OUT sw1 sw2
1
0
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

114

POSITION

Synopsis Returns the current position.

POSITION {axis = newPositionValue}
POSITION {axis}
variable = POSITION axis

axis Defined name or index of an axis.
newPositionValue Any integer expression that evaluates to a valid axis position
variable Any variable declared with VAR statement

Description The POSITION variable returns the current position of the axis.

Assignment of a value to the POSITION variable overwrites the internal position setting
with the new value. This results effectively in a transformation of the axes coordinate
system. POSITION shifts the origin of the coordinate system to the assigned position. All
subsequent references to an axis position are relative to the reference point defined with
POSITION.

The values are internally stored as encoder counts and all calculations are done in units
of encoder counts. Yet, the transformation like every assignment and retrieval of the
contents of a variable is done in units that are defined by the SCALE command.

Examples

>POSITION Y
Y=342
>POSITION x=0 z=0
>Y POSITION=180000
>POSITION
X=0
Y=180000
Z=0
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

115

POWER

Synopsis Turns on the main power.

POWER

Description The POWER command turns on the motor power relay and starts a diagnostic sequence.
All outputs are set to the initial state defined in the configuration (.INI) file. The motion
processor(s) is initialized and the amplifiers are enabled.

Diagnostic procedure requires all axis positions to not change for 200 ms. If some axes
move the power is shut down

Examples

>POWER
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

116

PRINT

Synopsis Prints data to the terminal.

PRINT {value|”text”|#char}

value Any valid expression
"text" String to be print
char ASCII code of character to be print

Description PRINT lets you display any value to the console. This enables a programmer to provide
information to the console operator. The argument PRINT command could be an
expression, string or ASCII code.

Examples

>PRINT "Positions:", #10, #13, Pos X, #10, #13, Pos Y
Positions:
2200
12000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

117

PROC

Synopsis Declares procedure and its parameters.

PROC procname [parameter {parameter}]

Procname Any valid and unique identifier
Parameter Any valid and unique identifier

Description The PROC statement declares procedure name and parameters. The maximum number
of parameters is 10. All parameters are considered optional. If no parameter is specified
at the procedure invocation a dedicated constant (_NA) is assigned to the parameters

The procedure definition is terminated with the RETURN statement.

Examples

; Example of procedure TEST with three parameters
PROC TEST Axis, Speed, Accel
VEL Axis = Speed
ACC Axis = Accel
RETURN

>TEST X, 2000,1000 ; invoking procedure TEST
>X VEL ACC
2000
1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

118

PROFILE

Synopsis Defines the velocity profile.

PROFILE {axis = newValue}
PROFILE {axis}
variable = PROFILE axis

axis Defined name or index of an axis.
newValue An integer expression:

0 Trapezoidal
1 S-Velocity profile
2 Spline velocity profile

variable Any variable declared with VAR statement

Description The PROFILE command defines the velocity profile of an axis. When S-profile is
specified the axis variables ACCELERATION, DECELERATION, AJERK, DJERK and
VELOCITY are used to define the motion trajectory.

Examples

>PROFILE Y
Y=0
>PROFILE x=0 z=0
>Y PROFILE = 1
>PROFILE
X=0
Y=1
Z=0

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

119

PVT

Synopsis Prepare for motion in Position-Velocity-Time mode.

PVT pvt_array

pvt_array An array containing the PVT points definition

Description The command PVT requests motion in PVT mode defined by the points descriptions
stored in the pvt_array

See also “Position-Velocity-Time Motion” on page 45.

Examples

>PVT PointsA[0]
>GO

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

120

RC

Synopsis Returns the reason code for procedure termination.

Description If a procedure execution has stopped RC returns a code for the reason of the
termination. The codes are listed in the following table.

0 No procedure started or execution terminated normally

4 STOP Command executed

5 HALT Command executed

6 RETURN statement executed

7 User defined limit position reached

8 Error in current statement

9 Error in Supervisor macro processing

10 Error in Exception macro processing

11 Maximum position error exceeded

12 Bad hardware response

13 Wraparound in hardware counters

14 Error in math library

15 Error when processing Guard expression

16 Guard condition violated

17 Time slice overrun

Examples

>RC
6

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

121

RECORD

Synopsis Records axis positions.

RECORD Samples TimeDelta {axis}

Samples Total number of samples to be taken.
TimeDelta Time between two subsequent samples [ms]
axis Defined name or index of an axis.

Description There are a limited number of samples of the actual axis position recorded. The
maximum number of taken samples is defined in configuration file, [SYSTEM] section,
by the "Samples" keyword.

The time between two samples is defined by the TimeDelta parameter. The smallest
time is equal to the motion kernel time slice.

If no axis is specified the samples are taken for all axes known to the system.

See also SAMPLES

Examples

>RECORD 5 10 X
>SAMPLES
970147 149
972083 148
974013 148
975940 196
977863 197

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

122

RELATIVE

Synopsis Defines relative target position.

RELATIVE {axis = distance}
RELATIVE {axis}
variable =RELATIVE axis

axis Defined name or index to an existing axis.
distance Any valid expression .

Description The distance is used to calculate the new axis target for a subsequent Go command
using the trapezoidal velocity profile. New target is equal to sum of distance and current
axis position.

The command requests position mode of motion and overwrites any other motion
request commands like ABSOLUTE, FORWARD, REVERSE, LINE, ARC, or PVT.

Examples

>POSITION
X=1000
Y=1000
Z=1000
>RELATIVE x=200 z=300 y=100
>GO X Y Z
>POSITION
X=1200
Y=1100
Z=1300

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

123

REPORT

Synopsis Defines the report format.

REPORT [[=] SelectionMask]

SelectionMask An integer number that is a bit representation of the selected
display items

Description When the system is in an interactive verbal mode, there is a number of items that can
be reported each time a blank line is sent from the console. Report chooses those items.

Setting the corresponding bit to 1 does the selection.

Bit Hex Mask Description

0 00000001 Procedure processor state (reports: IDLE or
RUNNING)

1 00000002 Currently executed procedure line number

2 00000004 Procedure stop reason (if procedure is stopped)

3 00000008 Procedure stop error (if stopped bacause of error)

4 00000010 Procedure stop time

5 00000020 Procedure stop line

6 00000040 System time in timer ticks

7 00000080 Supervisor procedure name

8 00000100 Exception procedure name

9 00000200 Guard expression

10 00000400 Record statement execution status

11 00000800 System power state

12 00001000 Hardware servo loop state

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

124

Bit Hex Mask Description

13 00002000 User command processing error

14 00004000 User command processing acknowledge

15 00008000 User procedure call acknowledge

16 00010000 Notify on procedure stop

17 00020000 Notify on axis motion stop

18 00040000 Reserved

19 00080000 An axis is moving

20 00100000 Servo OFF on some axis

If REPORT command is specified without a parameter, it returns the active setting of the
report word.

Examples

>REPORT 0x0001
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

125

RESET

Synopsis Resets the servo controller.

RESET

no parameters

Description The controller performs cold reboot.

The controller is reset to its power up state. All I/O lines are set to the hardware initial
values.

Actually, Reset does the following:

• Stops the motion of all axes

• Executes the NOSERVO statement

• Executes the NOPOWER statement

• Resets the motion control processor internal logic

• Initiate a cold boot of the PC system

The power up settings of the I/O lines are determined by the settings defined in the
configuration file. Those are initialized with the POWER command only.

Examples

>RESET
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

126

RETURN

Synopsis Defines the end of macro or procedure.

Synopsis RETURN [expression]

expression Any value to be returned as a result of procedure execution

Description The RETURN statement defines the end of procedure or macro. You could have more
than one RETURN statement. Optionally you could return a value to the calling
procedure by entering an expression after the statement. The return value is stored in
the variable RV. If no expression is specified then zero is returned by default.

Examples

; Example of procedure TEST with three parameters
PROC TEST Axis, Speed, Accel
VEL Axis = Speed
ACC Axis = Accel
RETURN

>TEST X, 2000,1000 ; invoking procedure TEST
>X VEL ACC
2000
1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

127

REVERSE

Synopsis Jog axis backwards using the predefined velocity and acceleration.

REVERSE { axis }

axis Defined name or index of an axis.

Description The command REVERSE requests motion in velocity mode (also called jogging). Motion
starts after GO command is issued.

The command overwrites any other motion request commands like RELATIVE,
ABSOLUTE, FORWARD, LINE, ARC or PVT.

Examples

>POS X
13800
>REV X
>GO X
>POS X
12000
>POS X
7560
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

128

RLIMIT

Synopsis Define the minimum allowed position for an axis target.

RLIMIT {axis = limit }
RLIMIT {axis }
variable = RLIMIT axis

axis Defined name or index of an axis.
limit Any integer expression that evaluates to a valid axis position

or NOLIMIT

Description The RLIMIT command is intended to limit the working envelope of an axis. If the axis is
commanded to go below the defined limit the motion will be stopped and the exception
macro will be started. The axis status word indicates such position limit violation with a
dedicated flag.

If the RLIMIT is set to 0 then the position limit violation is ignored.

Examples

>RLIMIT x=-12000 y=-100 z=0
>RLI
X=-12000
Y=-100
Z=0
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

129

RV

Synopsis Returns the value set by the Return statement of the calling procedure.

Description Every procedure returns a value that is passed as an argument to the RETURN
statement. The returned value is stored in the RV variable. Then, it could be processed
by the calling routine.

Examples

MACRO TestRV
RETURN 129

>TestRV
>RV
129
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

130

SAMPLES

Synopsis Lists the position samples recorded with the RECORD command.

SAMPLES [SampleNumber | FileName]

SampleNumber Number of samples to be returned

Description The command SAMPLES returns a list of the position and error samples recorded by the
RECORD command. Sample number 1 refers to the first recorded sample of the last
RECORD command.

If no sample number is specified all samples are displayed. If a file name is specified
instead of a number then the samples are stored in the file in ASCII format.

A sample has the following format:

[Position][Space][Position Error][CR][LF]

See also RECORD

Examples

>RECORD 5 10 X
>SAMPLES
970147 149
972083 148
974013 148
975940 196
977863 197

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

131

SCALE

Synopsis Defines the global scaling factors.

SCALE [LinearScaling] [,RotationalScaling]

LinearScaling Scaling factor for linear motions
RotationalScaling Scaling factor for rotational motions

Description Converting of the user defined units to encoder counts and vice versa is scaled by
coefficients defined by the SCALE command. It provides individual scaling for the linear
and for the rotational axes. Setting the scaling factors to zero eliminates all conversions,
i.e. all measurement units will be in encoder counts.

This command allows switching between different units measurement. Thus, if system is
set up to accept millimeters as distance unit, defining of scaling factor of 0.001 will
enable the specification of distances in microns. Respectively, a scaling of 0,0393
(=25.4-1) would allow specifying of inches instead of millimeters.

Internally, all distances are transformed into encoder counts. Although the scaling factor
defines the precision used, the accuracy cannot be higher than the resolution of the
installed encoders.

There are two different scaling factors available. The linear scaling factor is used for
axes that are defined as linear axes with the L parameter in the axis setup of the
[SYSTEM] section of the initialization file. The rotational scaling factor is used for axes
that are defined as rotational axes with the R parameter in the axis setup of the
[SYSTEM] section of the initialization file.

If neither linear nor rotational scaling is specified, current settings of scale factors are
returned to console.

Examples

>SCALE 2, 0.1
>SCALE
2.000000 0.100000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

132

SERVO

Synopsis Activates the servo loop and release brakes.

SERVO {axis}

axis Defined name or index of an axis.

Description The command SERVO turns on the motor amplifiers power and activates the servo loop
controlled by the servo processor. If a brake is associated with the axis it is released
automatically.

After closing the servo loop the axis will feel stiff when trying to move it manually. If the
axis is forced to move from its target position by an external force, the servo loop will
break as soon as the deviation between target position and actual position becomes
greater than the limit defined by the MAXERROR variable.

If no axes are specified the servo loop for all axes known to the system is closed.

Examples

>SERVO
OK
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

133

STATUS

Synopsis Returns the current status of the system and axis.

STATUS [axis]
axis Defined name or index of an axis.

Description Return the current system status encoded as a 32 bit integer value.

• The upper 16 bits represent the current system status. They are common for all
axes.

• The lower 16 bits represent the current status of the specified axis.

The data is always reported in hexadecimal format regardless of the INFO setting.

Bit # Hex Mask Description

0 00000001 Acquire next index pulse

1 00000002 Forward limit (FLIMIT) violated

2 00000004 Reverse limit (RLIMIT) violated

3 00000008 Index pulse acquired

4 00000010 Undefined

5 00000020 Undefined

6 00000040 Interpolator is operating

7 00000080 Axis servo off

8 00000100 Emergency input activated

9 00000200 Axis turned off because of excessive position error

10 00000400 Target position reached

11 00000800 Moving in velocity mode

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

134

12 00001000 Moving on forward direction

13 00002000 Amplifier current overload

14 00004000 Output shortage or operating power is missing

15 00008000 Board power failure

16 00010000 User command error

17 00020000 User procedure execution error

18 00040000 Supervisor execution error

19 00080000 Servo loop error (broken)

20 00100000 Interpolation in action

21 00200000 Recording in action

22 00400000 User procedure is executing

23 00800000 Guard condition is violated

24 01000000 Supervisor is installed

25 02000000 Exception macro is installed

26 04000000 Reserved

27 08000000 Reserved

28 10000000 Reserved

29 20000000 Reserved

30 40000000 System is not initialized

31 80000000 System has no power

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

135

STOP

Synopsis Stops motion of an axis immediately.

STOP {axis}

axis Defined name or index of an axis.

Description The axis is stopped immediately with the highest possible deceleration.

If no axis is specified all axes are stopped. In addition, if the axis parameter is not
specified, the execution of any running procedure is interrupted.

Examples

>STOP
OK
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

136

STROBE

Synopsis Selects the source of the reference strobe signal.

STROBE {axis = strobesource}

axis Defined name or index of an axis.
strobesource Source of index strobe according to the table below

Description This variable is used by the LATCH command to determine the source of the strobe
signal. This signal is intended to detect the reference position of the axis. Strobe values
select the input line according to the hardware spec of the controller.

Note

The strobe source codes vary between different servo control boards. Verify that data
with the hardware documentation of the board you are using

The strobe input is common for all axes assigned to the same board. Thus, changing of
the strobe source for a single axis will reflect on the other two axes controlled from the
same board.

Axes indexes 0, 1, 2 and 3 correspond to numbers, used in the axis name definition in
the configuration file. Default strobe code is 14.

Examples

>STROBE X = 14
>STROBE X
14

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

137

SUBMIT

Synopsis Starts procedure or macro execution in the Background task.

SUBMIT macroname [parameters]

macroname Macro or procedure name
parameter Macro parameter list

Description If a macro (defined by MACRO command) is called from the terminal, it is executed
completely (in the Foreground task) and then control is returned to the calling program.
SUBMIT, however, starts the specified macro execution in the Background task, to be
executed concurrently with the other tasks of the motion control kernel.

Only one background task could be running at a given moment of time. If the Submit
command is invoked while the Background task is busy, it will return an error.

Examples

; Definition of the macro Move
MACRO Move axis target

ABS axis=target
GO axis
WAIT STA [axis] & 0x400
PRINT "*** Move: moved to desired target", #10, #13

RETURN

>SUBMIT Move X 5000 ; submitting the macro to the background
>X POSITION
X=2200
>X POSITION
X=4000
*** Move: moved to desired target
>X POSITION
X=5000
>Move X 1000 ; executing the macro in foreground
*** Move: moved to desired target
>X POSITION
X=1000

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

138

SUPERVISOR

Synopsis Installs supervisor macro.

SUPERVISOR [MacroName]

Description The specified macro is installed and executed completely every time slice.

If no macro name is specified the supervisor is deactivated.

Examples

MACRO Watchout
IF IN [Sensor1] & IN [Sensor2]

OUT Valve1=1
ELSE

OUT Valve2=1
ENDIF
RETURN

>SUPERVISOR WatchOut
OK

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

139

TACHOMETER

Synopsis Returns the current velocity of an axis.

TACHOMETER {axis}
variable = TACHOMETER axis

axis Defined name or index of an axis.

Description TACHOMETER command returns the current axis velocity. It is calculated every time
slice based on the position samples.

Examples

>TACHOMETER x z
X=1223
Z=3000

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

140

TIMER

Synopsis Returns or sets the current value of the MCL countdown timer.

TIMER [[=] period]

period Time period in milliseconds to count down

Description The TIMER command returns the current value of a countdown timer. The initial value of
the timer if set by assigning a new value to the period parameter.

Examples

>TIMER = 1000
OK
>TIMER
670
>TIMER
221
>TIMER
0
>TIMER
0
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

141

UPLOAD

Synopsis Starts file transfer to upload a file to the host.

UPLOAD filename

filename Any string, containing the DOS path name of the file to be uploaded

Description The UPLOAD command invokes the file transfer program specified in the [SYSTEM]
section of the configuration file.

Examples

>UPLOAD motion.mcl
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

142

VACCEL

Synopsis Defines the desired velocity for coordinated motion – vector acceleration.

VACCEL [= accel]

accel Desired vector acceleration.

Description The VACCEL sets vector acceleration used during coordinated motion requested by
LINE or ARC statements.

Examples

>VACCEL = 400
>VACCEL
400
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

143

VAR

Synopsis Defines global variables.

VAR {variablename}

variablename Any valid identifier

Description Variables can be defined within macro files. They are 32 bits signed integer numbers.

Array dimension is defined by enclosing the array size in square brackets. Only one-
dimensional arrays are allowed.

Examples

VAR xVelo
VAR vArray[10]
VAR V1, V2, V3
VAR S = 10 ; Default value

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

144

VELOCITY

Synopsis Defines the desired velocity.

VELOCITY {axis = speed}
VELOCITY {axis}
variable = VELOCITY axis

axis Defined name or index of an axis.
speed Desired velocity

Description Specifies the maximum desired velocity.

Examples

>VELOCITY x=2000 z=3000 y=1000
>VELOCITY
X=2000
Y=1000
Z=3000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

145

VERSION

Synopsis Returns the version number of the firmware.

Description The command returns the kernel version number and copyright information.

Examples

>VERSION
Motion Control Language Version 2.43
(c) Copyright 1993,1999 Logosol, Inc.

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

146

VSPEED

Synopsis Defines the desired vector velocity for coordinated motion.

VSPEED [= speed]

speed Expression that evaluates to valid vector velocity.

Description Vector speed is used when LINE or ARC statements request coordinated motion.

Examples

>VSPEED = 1000
>VSPEED
1000
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

147

WAIT

Synopsis Delays the macro execution.

WAIT expression

expression An arithmetic or boolean expression representing the condition to wait
for

Description The further execution of the procedure is delayed until the expression evaluates to a
non-zero value, i.e. until the condition becomes true.

Examples

DEFINE AxisMoving ((Status x & $0400) == 0)
ABSOLUTE X=1000
GO X
WAIT !AxisMoving

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

148

WHILE - ENDWHILE

Synopsis Specifies a loop.

WHILE expression
ENDWHILE

expression An expression that evaluates to 0 if and only if the condition is false

Description If the expression is evaluated to FALSE the further execution of the procedure continues
with the statement after ENDWHILE.

If the expression is evaluated to TRUE then procedure execution continues with the
statement after WHILE. The corresponding ENDWHILE statement will return the
procedure execution to the WHILE statement.

Examples

PROC Line4
RV = 0
WHILE RV << 4

PRINT "Line ", RV, #10
RV = RV + 1

ENDWHILE
RETURN

>Line4
Line 0
Line 1
Line 2
Line 3
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

149

XAXIS

Synopsis Defines X axis to be used in coordinated motion.

XAXIS [= axis]

axis Defined name or index of an axis.

Description The specified axis is used when LINE or ARC commands request coordinated motion.

Examples

>XAXIS = X
>XAxis
0
>XAXIS = Y
>XAxis
1
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

150

YAXIS

Synopsis Define Y axis to be used in coordinated motion.

YAXIS [= axis]

axis Defined name or index of an axis.

Description The specified axis is used when LINE or ARC commands request coordinated motion.

Examples

>YAXIS = Y
>YAxis
1
>XAXIS -= X
>XAxis
0
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

151

_CLOSE

Synopsis Closes a previously open file.

Description The _CLOSE command closes a previously open file. Only one file could be open at any
given time. Thus, an open file should closed, before opening another one.

Examples

>_OPEN “test.txt”, “r”
>_CLOSE
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

152

_OPEN

Synopsis Opens a file for I/O operation.

_OPEN [filename, mode]

filename Name of the file to open
mode Mode of file operation - read, write or both.

Description The command _OPEN is intended to enable read or write operations to a file. The file
could be open in one of the following modes:

Mode Description

r Open in read-only mode.

r+ Open for update (r/W)

w Opens file for reading and writing. The file must exist.

w+ Opens file for reading and writing. If the file does not exist it is created.

If the _OPEN command fails an error code is stored in the _IOERROR variable.

Examples

>_OPEN test.dat, w+
>_WRITE “test data”
>_CLOSE
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

153

_READ

Synopsis Reads formatted information from a file.

_READ [format_string, variable]

format_string C style formatting string.
variable Variable to read data into.

Description The _READ command allows to enter information from a file into macro variables. This
is implemented by using the format string describing the format of the data. The
firmware processes the string and knows how to convert the data read from the file.

The string could contain one of the following formatting characters:

Format string Type of the data to be expected from the file

“%ld” Long (32 bit) integer

“%c” Character

The file you want to read from has to be open before the _READ command is used.

If the command fails an error code is stored in the _IOERROR variable.

Examples

PROC RestoreParsX
_OPEN pars1.dat, r
_READ “%ld”, VEL X
_READ “%ld”, ACC X
_CLOSE
RETURN

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

154

_WRITE

Synopsis Writes formatted information to a file.

WRITE [format_string, variables]

format_string C style formatting string.
variable Variable to be written into file.

Description The _WRITE command writes a formatted string to a file. This is implemented by using
the format string describing the format of the data. The firmware processes the string
and knows how to convert the data to be written to the file.

The string could contain one of the following formatting characters:

Format string Type of the data to be expected from the file

“%ld” Long (32 bit) integer

“%c” Character

The file must be open before the use of _WRITE function.

If the command fails an error code is stored in the _IOERROR variable.

Examples

>_WRITE “Vel X = %ld”, VEL X
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

155

_PEEK

Synopsis Returns the number of bytes in the input file buffer.

_PEEK [result]

result Variable to hold the result

Description The function returns the number of bytes in the input file buffer.

The file must be open before the use of _PEEK command.

Examples

>_OPEN test, r
>_PEEK temp
>_READ “%ld”, VEL X
>_CLOSE
>

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

156

APPLICATION NOTES

XTTY.SYS DOS DEVICE DRIVER

Synopsis DEVICE=XTTY.SYS Com:[Baud[,Parity[,Data[,Stop]]]]

Description Com (COM1 | COM2)
Serial port to be used for console redirection.

Baud (12 | 24 | 48 | 96 | 19 | 38 | 115)
Baud rate for the serial port: The exact baud rate or the first two digits of the baud rate
can be specified. If nothing or a blank is specified at the position for the baud rate, the
system's actual baud rate remains unmodified.

Parity (NONE | ODD | EVEN)
Specifies the Parity for the serial port. Only the first character of the parity may be
specified. If nothing or a blank is specified at the position, the system's actual parity
remains unmodified.

Data (7 | 8)
Specifies the Data bits for the serial port. If nothing or a blank is specified at the position,
the system's actual data bits setting remains unmodified.

Stop (1 | 2)
Specifies the Stopbits for the serial port.
If no parameter is specified, the current setting remains unmodified.

Installation Install the communication driver in CONFIG.SYS

In order to reroute the console I/O from standard DOS CON to a terminal connected to
the serial port, it is necessary to install the provided communication driver XTTY.SYS as
a DOS device driver in CONFIG.SYS.

Redirection is performed automatically by MCL if XTTY driver is installed. The driver
could be used also as a parameter of the DOS command CTTY issued from the DOS
prompt.

Example Installing the communication driver to COM2

DEVICE=C:\MCL\XTTY.SYS COM2:96,n,8,1

MCL Programming Guide and Language Reference

Logosol, Inc. Doc. # 715009001

157

MCL.EXE MOTION CONTROL KERNEL

Synopsis MCL [-p ConfigFile] [SystemMacroFile] [UserMacroFile]

Description SystemMacroFile Name of an existing DOS file that contains system macros.

UserMacroFile Name of an existing DOS file that contains user defined macros.

ConfigFile Name of a configuration file to be used instead of MCL.INI.

When you invoke MCL.EXE and no ConfigFile is specified, MCL searches for
configuration file named MCL.INI. Although it is generally located in the same directory
as the MCL.EXE file, it can also be in some other directory. The current directory and the
home directory of MCL.EXE are searched for it automatically. If ConfigFile is not found,
MCL.EXE terminates with an error message.

There are no default filename extensions associated with the files.

Logosol, Inc.

1155 Tasman Drive

Sunnyvale, CA 94089

USA

Tel: (408) 744-0974

Fax: (408) 744-0977

http://www.logosolinc.com

Document No 715009001

© 1999 Logosol, Inc.

Printed in USA

